1887

Abstract

Amplified fragment length polymorphism (AFLP) DNA fingerprinting was investigated as a tool for fast and accurate identification of acetic acid bacteria (AAB) to the species level. One hundred and thirty five reference strains and 15 additional strains, representing 50 recognized species of the family , were subjected to AFLP analysis using the restriction enzyme combination I/I and the primer combination A03/T03. The reference strains had been previously subjected to either DNA–DNA hybridization or 16S–23S rRNA spacer region gene sequence analysis and were regarded as being accurately classified at the species level. The present study revealed that six of these strains should be reclassified, namely LMG 1518 and LMG 1510 as and , respectively; LMG 23726 as ; and strains LMG 1545, LMG 1592 and LMG 1608 as . Cluster analysis of the AFLP DNA fingerprints of the reference strains revealed one cluster for each species, showing a linkage level below 50 % with other clusters, except for , and . These three species were separated into two, two, and three clusters, respectively. At present, confusion exists regarding the taxonomic status of and ; the AFLP data from this study supported their classification as separate taxa. The 15 additional strains could all be identified at the species level. AFLP analysis further revealed that some species harboured genetically diverse strains, whereas other species consisted of strains showing similar banding patterns, indicating a more limited genetic diversity. It can be concluded that AFLP DNA fingerprinting is suitable for accurate identification and classification of a broad range of AAB, as well as for the determination of intraspecific genetic diversity.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005157-0
2009-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1771.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005157-0&mimeType=html&fmt=ahah

References

  1. Boesch, C., Trček, J., Sievers, M. & Teuber, M. ( 1998; ). Acetobacter intermedius sp. nov. Syst Appl Microbiol 21, 220–229.[CrossRef]
    [Google Scholar]
  2. Brady, C., Venter, S., Cleenwerck, I., Vancanneyt, M., Swings, J. & Coutinho, T. ( 2007; ). A FAFLP system for the improved identification of plant-pathogenic and plant-associated species of the genus Pantoea. Syst Appl Microbiol 30, 413–417.[CrossRef]
    [Google Scholar]
  3. Caballero-Mellado, J., Fuentes-Ramírez, L. E., Reis, V. M. & Martinez-Romero, E. ( 1995; ). Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61, 3008–3013.
    [Google Scholar]
  4. Camu, N., De Winter, T., Verbrugghe, K., Cleenwerck, I., Vandamme, P., Takrama, J. S., Vancanneyt, M. & De Vuyst, L. ( 2007; ). Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73, 1809–1824.[CrossRef]
    [Google Scholar]
  5. Cleenwerck, I. & De Vos, P. ( 2008; ). Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol 125, 2–14.[CrossRef]
    [Google Scholar]
  6. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1558.[CrossRef]
    [Google Scholar]
  7. Cleenwerck, I., Camu, N., Engelbeen, K., De Winter, T., Vandemeulebroecke, K., De Vos, P. & De Vuyst, L. ( 2007; ). Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 57, 1647–1652.[CrossRef]
    [Google Scholar]
  8. Cleenwerck, I., González, Á., Camu, N., Engelbeen, K., De Vos, P. & De Vuyst, L. ( 2008; ). Acetobacter fabarum sp. nov., a Ghanaian cocoa bean heap fermentation acetic acid bacterium. Int J Syst Evol Microbiol 58, 2180–2185.[CrossRef]
    [Google Scholar]
  9. Coenye, T., Falsen, E., Vancanneyt, M., Hoste, B., Govan, J. R. W., Kersters, K. & Vandamme, P. ( 1999; ). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49, 405–413.[CrossRef]
    [Google Scholar]
  10. Dellaglio, F., Cleenwerck, I., Felis, G. E., Engelbeen, K., Janssens, D. & Marzotto, M. ( 2005; ). Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55, 2365–2370.[CrossRef]
    [Google Scholar]
  11. De Vuyst, L., Camu, N., De Winter, T., Vandemeulebroecke, K., Van de Perre, V., Vancanneyt, M., De Vos, P. & Cleenwerck, I. ( 2008; ). Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125, 79–90.[CrossRef]
    [Google Scholar]
  12. Dutta, D. & Gachhui, R. ( 2006; ). Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56, 1899–1903.[CrossRef]
    [Google Scholar]
  13. Dutta, D. & Gachhui, R. ( 2007; ). Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 57, 353–357.[CrossRef]
    [Google Scholar]
  14. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  15. Franke, I. H., Fegan, M., Hayward, C. & Sly, L. I. ( 1998; ). Nucleotide sequence of the nifH gene coding for nitrogen reductase in the acetic acid bacterium Acetobacter diazotrophicus. Lett Appl Microbiol 26, 12–16.[CrossRef]
    [Google Scholar]
  16. Franke, I. H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E. & Sly, L. I. ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49, 1681–1693.[CrossRef]
    [Google Scholar]
  17. Franz, C. M. A. P., Vancanneyt, M., Vandemeulebroecke, K., De Wachter, M., Cleenwerck, I., Hoste, B., Schillinger, U., Holzapfel, W. H. & Swings, J. ( 2006; ). Pediococcus stilesii sp. nov., isolated from maize grains. Int J Syst Evol Microbiol 56, 329–333.[CrossRef]
    [Google Scholar]
  18. Fuentes-Ramírez, L. E., Bustillos-Cristales, R., Tapia-Hernandez, A., Jimenez-Salgado, T., Wang, E. T., Martinez-Romero, E. & Caballero-Mellado, J. ( 2001; ). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51, 1305–1314.
    [Google Scholar]
  19. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  20. Gosselé, F., Swings, J. & De Ley, J. ( 1980; ). A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig C1, 178–181.
    [Google Scholar]
  21. Gosselé, F., Swings, J., Kersters, K., Pauwels, P. & De Ley, J. ( 1983; ). Numerical analysis of phenotypic features and protein gel electropherograms of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. Syst Appl Microbiol 4, 338–368.[CrossRef]
    [Google Scholar]
  22. Greenberg, D. E., Porcella, S. F., Stock, F., Wong, A., Conville, P. S., Murray, P. R., Holland, S. M. & Zelazny, A. M. ( 2006; ). Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56, 2609–2616.[CrossRef]
    [Google Scholar]
  23. Janssen, P., Coopman, R., Huys, G., Swings, J., Bleeker, M., Vos, P., Zabeau, M. & Kersters, K. ( 1996; ). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142, 1881–1893.[CrossRef]
    [Google Scholar]
  24. Jojima, Y., Mihara, Y., Suzuki, S., Yokozeki, K., Yamanaka, S. & Fudou, R. ( 2004; ). Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54, 2263–2267.[CrossRef]
    [Google Scholar]
  25. Katsura, K., Kawasaki, H., Potacharoen, W., Saono, S., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2001; ). Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 51, 559–563.
    [Google Scholar]
  26. Kersters, K., Lisdiyanti, P., Komagata, K. & Swings, J. ( 2006; ). The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In The Prokaryotes, 3rd edn, vol. 5, pp. 163–200. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer-Verlag.
  27. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R. & Clark, W. A. (editors) ( 1992; ). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code. Washington, DC: American Society for Microbiology.
  28. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2000; ). Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 46, 147–165.[CrossRef]
    [Google Scholar]
  29. Lisdiyanti, P., Kawasaki, H., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2001; ). Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47, 119–131.[CrossRef]
    [Google Scholar]
  30. Lisdiyanti, P., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2002; ). Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 52, 813–818.[CrossRef]
    [Google Scholar]
  31. Lisdiyanti, P., Navarro, R. R., Uchimura, T. & Komagata, K. ( 2006; ). Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 56, 2101–2111.[CrossRef]
    [Google Scholar]
  32. Loganathan, P. & Nair, S. ( 2004; ). Swaminathania salitorans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54, 1185–1190.[CrossRef]
    [Google Scholar]
  33. Malimas, T., Yukphan, P., Takahashi, M., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2007; ). Gluconobacter kondonii sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 53, 301–307.[CrossRef]
    [Google Scholar]
  34. Malimas, T., Yukphan, P., Takahashi, M., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2008a; ). Asaia lannaensis sp. nov., a new acetic acid bacterium in the Alphaproteobacteria. Biosci Biotechnol Biochem 72, 666–671.[CrossRef]
    [Google Scholar]
  35. Malimas, T., Yukphan, P., Takahashi, M., Muramatsu, Y., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2008b; ). Gluconobacter roseus (ex Asai 1935) sp. nov., nom. rev., a pink-colored acetic acid bacterium in the Alphaproteobacteria. J Gen Appl Microbiol 54, 119–125.[CrossRef]
    [Google Scholar]
  36. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  37. Moore, J. E., Mc Calmont, M., Xu, J., Millar, B. C. & Heaney, N. ( 2002; ). Asaia sp., an unusual spoilage organism of fruit-flavored bottled water. Appl Environ Microbiol 68, 4130–4131.[CrossRef]
    [Google Scholar]
  38. Muthukumarasamy, R., Cleenwerck, I., Revathi, G., Vadivelu, M., Janssens, D., Hoste, B., Gum, K. U., Park, K.-D., Son, C. Y. & other authors ( 2005; ). Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28, 277–286.[CrossRef]
    [Google Scholar]
  39. Navarro, R. R., Uchimura, T. & Komagata, K. ( 1999; ). Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. J Gen Appl Microbiol 45, 295–300.[CrossRef]
    [Google Scholar]
  40. Ndoye, B., Cleenwerck, I., Engelbeen, K., Dubois-Dauphin, R., Guiro, A. T., Van Trappen, S., Willems, A. & Thonart, P. ( 2007; ). Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from mango fruit (Mangifera indica L.). Int J Syst Evol Microbiol 57, 1576–1581.[CrossRef]
    [Google Scholar]
  41. On, S. L. W., Harrington, C. S. & Atabay, H. I. ( 2003; ). Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and turkey faeces. J Appl Microbiol 95, 1096–1105.[CrossRef]
    [Google Scholar]
  42. Savelkoul, P. H., Aarts, H. J., de Haas, J., Dijkshoorn, L., Duim, B., Otsen, M., Rademaker, J. L., Schouls, L. & Lenstra, J. A. ( 1999; ). Amplified-fragment length polymorphism analysis: the state of the art. J Clin Microbiol 37, 3083–3091.
    [Google Scholar]
  43. Schüller, G., Hertel, C. & Hammes, W. P. ( 2000; ). Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50, 2013–2020.[CrossRef]
    [Google Scholar]
  44. Sievers, M. & Swings, J. ( 2005; ). Family Acetobacteraceae. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, pp. 41–95. Edited by G. M. Garrity. New York: Springer.
  45. Sievers, M., Sellmer, S. & Teuber, M. ( 1992; ). Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in Central Europe. Syst Appl Microbiol 15, 386–392.[CrossRef]
    [Google Scholar]
  46. Silva, L. R., Cleenwerck, I., Rivas, R., Swings, J., Trujillo, M. E., Willems, A. & Velázquez, E. ( 2006; ). Acetobacter oeni sp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56, 21–24.[CrossRef]
    [Google Scholar]
  47. Sokollek, S. J., Hertel, C. & Hammes, W. P. ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48, 935–940.[CrossRef]
    [Google Scholar]
  48. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  49. Takahashi, M., Yukphan, P., Yamada, Y., Suzuki, K., Sakane, T. & Nakagawa, Y. ( 2006; ). Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S–23S rRNA gene internal transcribed spacer sequences. J Gen Appl Microbiol 52, 187–193.[CrossRef]
    [Google Scholar]
  50. Thompson, F. L., Hoste, B., Vandemeulebroecke, K. & Swings, J. ( 2001; ). Genomic diversity amongst Vibrio isolates from different source determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24, 520–538.[CrossRef]
    [Google Scholar]
  51. Trček, J. & Teuber, M. ( 2002; ). Genetic and restriction analysis of the 16S–23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol Lett 208, 69–75.
    [Google Scholar]
  52. Tuuminen, T., Heinäsmäki, T. & Kerttula, T. ( 2006; ). First report of bacteremia by Asaia bogorensis, in a patient with a history of intravenous-drug abuse. J Clin Microbiol 44, 3048–3050.[CrossRef]
    [Google Scholar]
  53. Tuuminen, T., Roggenkamp, A. & Vuopio-Varkila, J. ( 2007; ). Comparison of two bacteremic Asaia bogorensis isolates from Europe. Eur J Clin Microbiol Infect Dis 26, 523–524.[CrossRef]
    [Google Scholar]
  54. Urakami, T., Tamaoka, J., Suzuki, K.-I. & Komagata, K. ( 1989; ). Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39, 50–55.[CrossRef]
    [Google Scholar]
  55. Van der Meulen, R., Adriany, T., Verbrugghe, K. & De Vuyst, L. ( 2006; ). Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl Environ Microbiol 72, 5204–5210.[CrossRef]
    [Google Scholar]
  56. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  57. Willems, A., Coopman, R. & Gillis, M. ( 2001; ). Comparison of sequence analysis of 16S–23S rDNA spacer regions, AFLP analysis and DNA-DNA hybridizations in Bradyrhizobium. Int J Syst Evol Microbiol 51, 623–632.
    [Google Scholar]
  58. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing & Wiley-Interscience.
  59. Yamada, Y. & Yukphan, P. ( 2008; ). Genera and species in acetic acid bacteria. Int J Food Microbiol 125, 15–24.[CrossRef]
    [Google Scholar]
  60. Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T. & Komagata, K. ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50, 823–829.[CrossRef]
    [Google Scholar]
  61. Yukphan, P., Potacharoen, W., Tanasupawat, S., Tanticharoen, M. & Yamada, Y. ( 2004; ). Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 54, 313–316.[CrossRef]
    [Google Scholar]
  62. Yukphan, P., Malimas, T., Potacharoen, W., Tanasupawat, S., Tanticharoen, M. & Yamada, Y. ( 2005; ). Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 51, 301–311.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005157-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005157-0
Loading

Data & Media loading...

Supplements

(GTG) -PCR fingerprints of strains belonging to the species of the branch. [ PDF] 101 KB

PDF

DNA–DNA relatedness of strains. [ PDF] 111 KB

PDF

DNA–DNA relatedness of strains. [ PDF] 187 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error