1887

Abstract

A mesophilic, aerobic, facultatively chemolithoautotrophic bacterium, designated strain EPR70, was isolated from hydrothermal fluids from diffuse-flow vents on the East Pacific Rise at  ° 50′ N 10 ° 17′ W. Cells were Gram-negative rods, approximately 0.8–1.0 μm long and 0.3–0.5 μm wide. Strain EPR70 grew at 20–40 °C (optimum 30–35 °C), 1–25 % NaCl (optimum 2.5 %) and pH 5.0–7.5 (optimum pH 5.5). The shortest generation time observed for strain EPR70 was 42 min. Growth occurred under aerobic chemolithoautotrophic conditions in the presence of thiosulfate and CO. Strain EPR70 grew heterotrophically with acetate or n-alkanes as sole carbon and energy sources, and in complex artificial seawater medium. Nitrate was not used as an electron acceptor. The G+C content of the genomic DNA was 64 mol%. Phylogenetic analysis of the 16S rRNA gene indicated that this organism is a member of the class , with E1L3A as its closest relative (94 % sequence similarity). On the basis of phylogenetic analyses based on 16S rRNA, and genes and physiological analysis, it is proposed that the organism represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is EPR70 (=DSM 21483 =JCM 15514).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005058-0
2009-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1497.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005058-0&mimeType=html&fmt=ahah

References

  1. Antunes, A., Eder, W., Fareleira, P., Santos, H. & Huber, R. ( 2003; ). Salinisphaera shabanensis gen. nov., sp. nov., a novel, moderately halophilic bacterium from the brine-seawater interface of the Shaban Deep, Red Sea. Extremophiles 7, 29–34.
    [Google Scholar]
  2. Brault, M., Simoneit, B. R. T., Marty, J. C. & Saliot, A. ( 1988; ). Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 1 ° N. Org Geochem 12, 209–219.[CrossRef]
    [Google Scholar]
  3. Durand, P., Reysenbach, A. L., Prieur, D. & Pace, N. ( 1993; ). Isolation and characterization of Thiobacillus hydrothermalis sp. nov., a mesophilic obligately chemolithotrophic bacterium isolated from a deep-sea vent in Fiji Basin. Arch Microbiol 159, 39–44.[CrossRef]
    [Google Scholar]
  4. Elsaied, H. E., Kimura, H. & Naganuma, T. ( 2007; ). Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems. Extremophiles 11, 191–202.[CrossRef]
    [Google Scholar]
  5. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). SeaView and phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  6. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. ( 1994; ). Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins.
  7. Jannasch, H. W. ( 1995; ). Microbial interactions with hydrothermal fluids. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions, pp. 273–296. Edited by S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux & R. E. Thomson. Washington, DC: American Geophysical Union.
  8. Jannasch, H. W., Wirsen, C. O., Nelson, D. C. & Robertson, L. A. ( 1985; ). Thiomicrospira crunogena sp. nov., a colorless sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35, 422–424.[CrossRef]
    [Google Scholar]
  9. Karl, D. M. ( 1995; ). Ecology of free-living, hydrothermal vent microbial communities. In The Microbiology of Deep-Sea Hydrothermal Vents, pp. 35–124. Edited by D. M. Karl. Boca Raton, FL: CRC Press.
  10. Kaye, J. Z. & Baross, J. A. ( 2000; ). High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol Ecol 32, 249–260.[CrossRef]
    [Google Scholar]
  11. Kaye, J. Z., Marquez, M. C., Ventosa, A. & Baross, J. A. ( 2004; ). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, 499–511.[CrossRef]
    [Google Scholar]
  12. Kovacs, N. ( 1956; ). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703
    [Google Scholar]
  13. McCollom, T. M. & Shock, E. L. ( 1997; ). Geochemical constraints on chemolithoautotrophic metabolisms by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61, 4375–4391.[CrossRef]
    [Google Scholar]
  14. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  15. Nanba, K., King, G. M. & Dunfield, K. ( 2004; ). Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70, 2245–2253.[CrossRef]
    [Google Scholar]
  16. Raguénès, G., Christen, R., Guezennec, J., Pignet, P. & Barbier, G. ( 1997; ). Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47, 989–995.[CrossRef]
    [Google Scholar]
  17. Ruby, E. G. & Jannasch, H. W. ( 1982; ). Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149, 161–165.
    [Google Scholar]
  18. Ruby, E. G., Wirsen, C. O. & Jannasch, H. W. ( 1981; ). Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl Environ Microbiol 42, 317–324.
    [Google Scholar]
  19. Simon-Colin, C., Raguénès, G., Cozien, J. & Guezennec, J. G. ( 2008; ). Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol 104, 1425–1432.[CrossRef]
    [Google Scholar]
  20. Smits, T. H. M., Röthlisberger, M., Witholt, B. & van Beilen, J. B. ( 1999; ). Molecular screening for alkane hydroxylase genes in Gram-negative and Gram positive strains. Environ Microbiol 1, 307–317.[CrossRef]
    [Google Scholar]
  21. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K. ( 2004; ). Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54, 2325–2333.[CrossRef]
    [Google Scholar]
  22. Teske, A., Brinkhoff, T., Muyzer, G., Moser, D. P., Rethmeier, J. & Jannasch, H. W. ( 2000; ). Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66, 3125–3133.[CrossRef]
    [Google Scholar]
  23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  24. Vetriani, C., Speck, M. D., Ellor, S. V., Lutz, R. A. & Starovoytov, V. ( 2004; ). Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54, 175–181.[CrossRef]
    [Google Scholar]
  25. Vetriani, C., Chew, Y. S., Miller, S. M., Yagi, J., Coombs, J., Lutz, R. A. & Barkay, T. ( 2005; ). Mercury adaptation among bacteria from a deep-sea hydrothermal vent. Appl Environ Microbiol 71, 220–226.[CrossRef]
    [Google Scholar]
  26. Voordeckers, J. W., Starovoytov, V. & Vetriani, C. ( 2005; ). Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55, 773–779.[CrossRef]
    [Google Scholar]
  27. Xu, H. H. & Tabita, F. R. ( 1996; ). Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl Environ Microbiol 62, 1913–1921.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005058-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005058-0
Loading

Data & Media loading...

vol. , part 6, pp. 1497 - 1503

Generation time of sp. nov. EPR70 under different growth conditions.

Neighbour-joining phylogenetic analysis of the large subunit of the enzyme RubisCO form I from sp. nov. EPR70 , sp. strains EPR71 and EPR72 and E1L3A .

Neighbour-joining phylogenetic analysis of alkane hydroxylase (AlkB) from sp. nov. EPR70 , sp. strain EPR71 and E1L3A .

[PDF file of Supplementary Figures](661 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error