1887

Abstract

Two novel strains isolated from soils, JS12-10 and JS14-6, were characterized using a polyphasic approach to determine their taxonomic positions. These isolates were found to be aerobic, Gram-negative, motile with one polar flagellum, non-spore-forming and rod-shaped. Phenotypic and fatty acid data supported the affiliation of JS12-10 and JS14-6 to the genus . However, chemotaxonomic data and DNA–DNA relatedness values allowed differentiation of these strains from other species with validly published names. Strains JS12-10 and JS14-6 showed the highest 16S rRNA gene sequence similarities with Gsoil 3046 (98.4 %) and XD53 (97.9 %), respectively, and the 16S rRNA gene sequence similarity between them was 97.1 %. DNA–DNA hybridization values between the novel isolates and strains of other recognized species were 29–38 %. Therefore, strains JS12-10 and JS14-6 represent two novel species of the genus , for which the names sp. nov. (type strain JS12-10 =KACC 12747 =JCM 15423) and sp. nov. (type strain JS14-6 =KACC 12748 =JCM 15424) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004838-0
2009-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1685.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004838-0&mimeType=html&fmt=ahah

References

  1. An, D. S., Im, W. T., Yang, H. C., Yang, D. C. & Lee, S. T.(2005).Dyella koreensis sp. nov., a β-glucosidase-producing bacterium. Int J Syst Evol Microbiol 55, 1625–1628.[CrossRef] [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors)(1987).Current Protocols in Molecular Biology. New York: Wiley.
  3. Breznak, J. A. & Costilow, R. N.(1994). Physiological factors in growth. In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg, Washington, DC: American Society for Microbiology.
  4. Dauga, C.(2002). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52, 531–547. [Google Scholar]
  5. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  7. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  8. Johansen, J. E., Binnerup, S. J., Kroer, N. & Mølbak, L.(2005).Luteibacter rhizovicinus gen. nov., sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizosphere of barley (Hordeum vulgare L.). Int J Syst Evol Microbiol 55, 2285–2291.[CrossRef] [Google Scholar]
  9. Jung, H. M., Ten, L. N., Kim, K. H., An, D. S., Im, W. T. & Lee, S. T.(2009).Dyella ginsengisoli sp. nov., a novel bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 59, 460–465.[CrossRef] [Google Scholar]
  10. Kim, B. Y., Weon, H. Y., Lee, K. H., Seok, S. J., Kwon, S. W., Go, S. J. & Stackebrandt, E.(2006).Dyella yeojuensis sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56, 2079–2082.[CrossRef] [Google Scholar]
  11. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  12. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  13. Leblond-Bourget, N., Philippe, H., Mangin, I. & Decaris, B.(1996). 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46, 102–111.[CrossRef] [Google Scholar]
  14. Lee, D. W. & Lee, S. D.(2009).Dyella marensis sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 59, 1397–1400.[CrossRef] [Google Scholar]
  15. Mergaert, J., Cnockaert, M. C. & Swings, J.(2002).Fulvimonas soli gen. nov., sp. nov., a γ-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 52, 1285–1289.[CrossRef] [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  17. Nalin, R., Siomonet, P., Vogel, T. M. & Normand, P.(1999).Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 49, 19–23.[CrossRef] [Google Scholar]
  18. Reasoner, D. J. & Geldreich, E. E.(1985). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 1–7. [Google Scholar]
  19. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  20. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  21. Seldin, L. & Dubnau, D.(1985). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35, 151–154.[CrossRef] [Google Scholar]
  22. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington DC: American Society for Microbiology.
  23. Swings, J., Gillis, M., Kersters, K., De Vos, P., Gosselé, F. & De Ley, J.(1980).Frateuria, a new genus for “Acetobacter aurantius”. Int J Syst Bacteriol 30, 547–556.[CrossRef] [Google Scholar]
  24. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  25. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  26. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  27. Weon, H. Y., Kim, B. Y., Kwon, S. W., Park, I. C., Cha, I. B., Tindall, B. J., Stackebrandt, E., Trüper, H. G. & Go, S. J.(2005).Leadbetterella byssophila gen. nov., sp. nov., isolated from cotton-waste composts for the cultivation of oyster mushroom. Int J Syst Evol Microbiol 55, 2297–2302.[CrossRef] [Google Scholar]
  28. Xie, C. H. & Yokota, A.(2005).Dyella japonica gen. nov., sp. nov., a γ-proteobacterium isolated from soil. Int J Syst Evol Microbiol 55, 753–756.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004838-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004838-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1685 - 1690

Maximum-likelihood and maximum-parsimony trees based on almost-complete 16S rRNA gene sequences showing the phylogenetic position of strains JS12-10 and JS14-6 . [PDF](28 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error