During studies of moderately halophilic strains of from steppe soda lakes, we found a novel group of bacteria related to with salt optima at 50–80 g NaCl l. Phylogenetic analysis using 16S rRNA gene sequences of strains from soda lakes in Mongolia, Egypt and Siberia revealed separation of the group of new isolates from other species, including the closely related . DNA–DNA hybridization studies demonstrated that the new isolates form a homogeneous group at the species level, but at the same time are distinct from related species such as , , and . The new isolates are considered to be strains of a novel species, for which the name sp. nov. is proposed, with the type strain WN22 (=VKM B-2479 =DSM 21381). Photosynthetic pigments of the novel species are bacteriochlorophyll and carotenoids of the spirilloxanthin series with spirilloxanthin and derivatives thereof, together with small amounts of lycopene and rhodopin. Gas vesicles are formed by most of the strains, particularly in media containing yeast extract (0.5 g l) and acetate (0.5–2.0 g l). Sequence analysis of (nitrogenase) and (RuBisCO) confirmed the assignment of the strains to the genus and in particular the close relationship to . The novel species is found in soda lakes separated by great geographical distances and is an alkaliphilic and halophilic bacterium that tolerates salt concentrations up to 150–200 g NaCl l.


Article metrics loading...

Loading full text...

Full text loading...



  1. Boulygina, E. S., Kuznetsov, B. B., Marusina, A. I., Tourova, T. P., Kravchenko, I. K., Bykova, S. A., Kolganova, T. V. & Galchenko, V. F.(2002). A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology English translation of Mikrobiologiia) 71, 425–432.[CrossRef] [Google Scholar]
  2. Bryantseva, I., Gorlenko, V. M., Kompantseva, E. I., Imhoff, J. F., Süling, J. & Mityushina, L.(1999).Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49, 697–703.[CrossRef] [Google Scholar]
  3. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA-DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  4. Dodgson, K. S.(1961). Determination of inorganic sulphate in studies on the enzymatic and nonenzymatic hydrolysis of carbohydrate and other sulphate esters. Biochem J 78, 312–329. [Google Scholar]
  5. Felsenstein, J.(1981). Evolutionary trees from DNA-sequences – a maximum-likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.53c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Foti, M., Sorokin, D. Y., Lomans, B., Mussman, M., Zacharova, E. E., Pimenov, N. V., Kuenen, J. G. & Muyzer, G.(2007). Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73, 2093–2100.[CrossRef] [Google Scholar]
  8. Gorlenko, V. M.(2007). Anoxygenic phototrophic bacteria of soda lake. In Proceedings of Winogradsky Institute of Microbiology, vol. XIV, Alkaliphilic Microbial Communities, pp. 225–257. Edited by V. F. Gal'chenko. Moscow: Nauka (in Russian).
  9. Gorlenko, V. M., Bryantseva, I. A., Panteleeva, E. E., Tourova, T. P., Kolganova, T. V., Makhneva, Z. K. & Moskalenko, A. A.(2004).Ectothiorhodosinus mongolicus gen. nov., sp. nov., a new purple bacterium from a soda lake in Mongolia. Microbiology English translation of Mikrobiologiia) 73, 66–73.[CrossRef] [Google Scholar]
  10. Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O.(2005). PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33, W557–W559.[CrossRef] [Google Scholar]
  11. Imhoff, J. F.(2001). The anoxygenic phototrophic purple bacteria. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 621–627. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  12. Imhoff, J. F.(2006). The family Ectothiorhodospiraceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 6, pp. 874–886. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  13. Imhoff, J. F. & Süling, J.(1996). The phylogenetic relationship among Ectothiorhodospiraceae. A reevaluation of their taxonomy on the basis of rDNA analyses. Arch Microbiol 165, 106–113.[CrossRef] [Google Scholar]
  14. Imhoff, J. F., Hashwa, F. & Trüper, H. G.(1978). Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84, 381–388. [Google Scholar]
  15. Imhoff, J. F., Sahl, H. G., Soliman, G. S. H. & Trüper, H. G.(1979). The Wadi Natrun: chemical composition and microbial mass development in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1, 219–234.[CrossRef] [Google Scholar]
  16. Imhoff, J. F., Tindall, B. J., Grant, W. D. & Trüper, H. G.(1981).Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Arch Microbiol 130, 238–242.[CrossRef] [Google Scholar]
  17. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  18. Marusina, A. I., Boulygina, E. S., Kuznetsov, B. B., Tourova, T. P., Kravchenko, I. K. & Gal'chenko, V. F.(2001). A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology English translation of Mikrobiologiia) 70, 73–78.[CrossRef] [Google Scholar]
  19. Moskalenko, A. A., Toropygina, O. A. & Kuznetsova, N. Yu.(1995). The isolation of the B812 subcomplex of the B880 core complex and the B800–850 complex from membranes of Chromatium minutissimum with extracted carotenoids: structural role of carotenoids. J Photochem Photobiol B Biol 27, 199–207.[CrossRef] [Google Scholar]
  20. Owen, R. J., Hill, L. R. & Lapage, S. P.(1969). Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7, 503–516.[CrossRef] [Google Scholar]
  21. Pfennig, N. & Lippert, K. D.(1966). Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55, 245–256 (in German).[CrossRef] [Google Scholar]
  22. Reznikov, A. A., Mulikovskaya, E. P. & Sokolov, I. Yu.(1970). In Methods for Natural Water Analysis, p. 118. Moscow: Nedra (in Russian).
  23. Ryter, A., Kellenberger, E., Birchandersen, A. & Maaloe, O.(1958). Etude au microscope electronique des plasmes contenant de l'acide deoxyribonucleique. 1. Les nucleoides des bacteries en croissance active. Z Naturforsch B 13B, 597–605 (in French). [Google Scholar]
  24. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  25. Sanger, F., Nicklen, S. & Coulson, A. R.(1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef] [Google Scholar]
  26. Sorokin, D. Yu., Gorlenko, V. M., Namsaraev, B. B., Namsaraevm, Z. B., Lysenko, A. M., Eshinimaev, B. Ts., Khmelenina, V. N., Trotsenko, Yu. A. & Kuenen, J. G.(2004). Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522, 235–248.[CrossRef] [Google Scholar]
  27. Spiridonova, E. M., Berg, I. A., Kolganova, T. V., Ivanovskii, R. N., Kuznetsov, B. B. & Tourova, T. P.(2004). An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Mikrobiologiia 73, 377–387 (in Russian). [Google Scholar]
  28. Stackebrandt, E. & Ebers, J.(2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155. [Google Scholar]
  29. Swindell, S. R. & Plasterer, T. N.(1997).seqman. Contig assembly. Methods Mol Biol 70, 75–89. [Google Scholar]
  30. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  31. Tourova, T. P., Spiridonova, E. M., Berg, I. A., Slobodova, N. V., Boulygina, E. S. & Sorokin, D. Yu.(2007). Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH genes. Int J Syst Evol Microbiol 57, 2387–2398.[CrossRef] [Google Scholar]
  32. Van de Peer, Y. & De Wachter, R.(1994).treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570. [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 658 - 664

Phylogenetic position of strain WN22 among members of the based on conceptual translations of . The tree was generated by the maximum-likelihood method.

Phylogenetic position of strain WN22 among members of the based on deduced amino acid sequences of genes. The tree was constructed by the neighbour-joining algorithm with sp. PCC 7120 as the outgroup.

[PDF file of Supplementary Figs S1 and S2](21 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error