Eight psychrotolerant, xylan-degrading strains of bacteria that were catalase-positive, oxidase-negative and able to reduce nitrate to nitrite were isolated from soil beneath moist non-acidic and acidic tundra in northern Alaska. The DNA G+C contents for the strains ranged from 46.4–50.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that each strain belonged to the genus . The highest level of 16S rRNA gene similarity was found between the eight strains and NRRL NRS-290 (98.9–99.1 %). However, despite relatively high 16S rRNA gene similarity, DNA–DNA hybridization, repetitive elements genotyping and phenotypic analysis revealed that at least two of the strains differed from NRRL NRS-290. DNA–DNA hybridization values between strain A10b and NRRL NRS-290 (4.3 %), between strain B22a and NRRL NRS-290 (48.8 %) and between strain A10b and strain B22a (11.0 %) were below those recommended by the ad hoc committee for those belonging to the same species. Significant phenotypic features that differentiate these novel strains from included their inability to utilize -arabinose and ability to utilize glycogen as sole carbon sources. Unlike strains 1B4a and B22a, strains A6a and A10b produced ethanol as an end product of glucose fermentation, utilized acetic acid and 2,3-butanediol and did not utilize -gluconic acid. MK-7 was the major isoprenoid quinone and anteiso-C was the most abundant fatty acid for strains A10b and B22a. On the basis of these results, strains A10b and B22a are each considered to represent a novel species of the genus , for which the names sp. nov. and sp. nov. are proposed, respectively. The type strain of sp. nov. is A10b (=NRRL B-51094=DSM 21291). The type strain of sp. nov. is B22a (=NRRL B-51090=DSM 21292).


Article metrics loading...

Loading full text...

Full text loading...



  1. Cann, I. K. O., Stroot, P. G., Mackie, K. R., White, B. A. & Mackie, R. I.(2001). Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51, 293–302. [Google Scholar]
  2. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  3. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  4. Fujie, K., Hu, H.-Y., Tanaka, H., Urano, K., Saitou, K. & Katayama, A.(1998). Analysis of respiratory quinones in soil for characterization of microbiota. Soil Sci Plant Nutr 44, 393–404.[CrossRef] [Google Scholar]
  5. Haugen, R. K.(1982).Climate of Remote Areas in North-Central Alaska: 1975–1979 Summary. Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.
  6. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  7. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  8. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  9. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  10. Lányí, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  11. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  12. Morales, P., Madarro, A., Flors, A., Sendra, J. M. & Perez-Gonzalez, J. A.(1995). Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17, 424–429.[CrossRef] [Google Scholar]
  13. Nakamura, L. K.(1984).Bacillus amylolyticus sp. nov., nom. rev., Bacillus lautus sp. nov., nom. rev., Bacillus pabuli sp. nov., nom. rev., and Bacillus validus sp. nov., nom. rev. Int J Syst Bacteriol 34, 224–226.[CrossRef] [Google Scholar]
  14. Nei, M. & Kumar, S.(2000).Molecular Evolution and Phylogenetics. New York: Oxford University Press.
  15. Park, M. J., Kim, H. B., An, D. S., Yang, H. C., Oh, S. T., Chung, H. J. & Yang, D. C.(2007).Paenibacillus soli sp. nov., a xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 57, 146–150.[CrossRef] [Google Scholar]
  16. Ping, C.-L., Michaelson, G. J., Kimble, J. M. & Walker, D. A.(2005). Soil acidity and exchange properties of cryogenic soils in Arctic Alaska. Soil Sci Plant Nutr 51, 649–653.[CrossRef] [Google Scholar]
  17. Pirttijärvi, T. S. M., Graeffe, T. H. & Salkinoja-Salonen, M. S.(1996). Bacterial contaminants in liquid packaging boards: assessment of potential for food spoilage. J Appl Bacteriol 81, 445–458. [Google Scholar]
  18. Rivas, R., Mateos, P. F., Martinez-Molina, E. & Velazquez, E.(2005).Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55, 743–746.[CrossRef] [Google Scholar]
  19. Rivas, R., Garcia-Fraile, P., Mateos, P. F., Martinez-Molina, E. & Velazquez, E.(2006).Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 56, 2777–2781.[CrossRef] [Google Scholar]
  20. Saitou, N. & Nei, M.(1987). The neighbor-joining method – a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  21. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 47, 299–306.[CrossRef] [Google Scholar]
  22. Teather, R. M. & Wood, P. J.(1982). Use of congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43, 777–780. [Google Scholar]
  23. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequenced alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  24. Versalovic, J., Koeuth, T. & Lupski, J. R.(1991). Distribution of repetitive DNA-sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef] [Google Scholar]
  25. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 7, pp. 1708 - 1714

Additional neighbour-joining reduced and extended phylogenetic trees based on 16S rRNA gene sequences. [PDF](40 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error