sp. nov., a luminous marine bacterium isolated from seawater Free

Abstract

Two luminous marine bacteria, strains LC2-065 and LC2-102, were isolated from seawater at Sagami Bay in Japan. These bacteria were Gram-negative, oxidase-negative, catalase-positive, motile and coccoid-rods. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA) using six loci (, , , , and ) and sequence analysis of the alpha subunit of luciferase () gene revealed that these bacteria were distinct from other species of the genus . These novel strains were most closely related to . The DNA–DNA hybridization value between strain LC2-065 and ATCC BAA-1194 was 42.1 %. The major fatty acids were C C, C, C and C iso 2-OH and/or C 7 (summed feature 3). The DNA G+C contents of strains LC2-065 and LC2-086 were 42.2 and 42.9 mol%, respectively. The phenotypic features of the novel strains were similar to those of and , but there were sufficient physiological differences for the novel strains to be easily differentiated. On the basis of these results, these new strains represent a novel species, for which the name sp. nov. is proposed. The type strain is LC2-065 (=NBRC 104633=KCTC 22356).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004309-0
2009-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1438.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004309-0&mimeType=html&fmt=ahah

References

  1. Ast, J. C. & Dunlap, P. V.(2005). Phylogenetic resolution and habitat specificity of members of the Photobacterium phosphoreum species group. Environ Microbiol 7, 1641–1654.[CrossRef] [Google Scholar]
  2. Ast, J. C., Cleenwerck, I., Engelbeen, K., Urbanczyk, H., Thompson, F. L., De Vos, P. & Dunlap, P. V.(2007).Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int J Syst Evol Microbiol 57, 2073–2078.[CrossRef] [Google Scholar]
  3. Beijerinck, M. W.(1889). Le Photobacterium luminosum, bacterie lumineuse de la Mer du Nord. Arch Neerl Sci Exactes Nat 23, 401–427. [Google Scholar]
  4. Boisvert, H., Chatelain, R. & Bassot, J. M.(1967). Étude d'un Photobacterium isolé de l'organe lumineux de poissons Leiognathidae. Ann Inst Pasteur (Paris) 112, 520–524. [Google Scholar]
  5. Dunlap, P. V. & Kita-Tsukamoto, K.(2001). Luminous bacteria. In The Prokaryotes, pp. 863–892. Edited by M. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Academic Press.
  6. Dunlap, P. V., Ast, J. C., Kimura, S., Fukui, A., Yoshino, T. & Endo, H.(2007). Phylogenetic analysis of host-symbiont specificity and codivergence in bioluminescent symbioses. Cladistics 23, 507–532.[CrossRef] [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  8. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  9. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  10. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  11. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  12. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  13. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  14. Nishino, T., Ikemoto, E. & Kogure, K.(2004). Application of atomic force microscopy to observation of marine bacteria. J Oceanogr 60, 219–225.[CrossRef] [Google Scholar]
  15. Park, Y. D., Baik, K. S., Seong, C. N., Bae, K. S., Kim, S. & Chun, J.(2006).Photobacterium ganghwense sp nov., a halophilic bacterium isolated from sea water. Int J Syst Evol Microbiol 56, 745–749.[CrossRef] [Google Scholar]
  16. Reichelt, J. L. & Baumann, P.(1973). Taxonomy of marine, luminous bacteria. Arch Mikrobiol 94, 283–330.[CrossRef] [Google Scholar]
  17. Reichelt, J. L., Baumann, P. & Baumann, L.(1976). Study of genetic relationships among marine species of genera Beneckea and Photobacterium by means of in vitro DNA-DNA hybridization. Arch Microbiol 110, 101–120.[CrossRef] [Google Scholar]
  18. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  19. Sawabe, T., Kita-Tsukamoto, K. & Thompson, F. L.(2007). Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189, 7932–7936.[CrossRef] [Google Scholar]
  20. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  21. Thompson, C. C., Thompson, F. L., Vicente, A. C. & Swings, J.(2007a). Phylogenetic analysis of vibrios and related species by means of atpA gene sequences. Int J Syst Evol Microbiol 57, 2480–2484.[CrossRef] [Google Scholar]
  22. Thompson, F. L., Gomez-Gil, B., Vasconcelos, A. T. R. & Sawabe, T.(2007b). Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microbiol 73, 4279–4285.[CrossRef] [Google Scholar]
  23. Thyssen, A. & Ollevier, F.(2005). Genus Photobacterium. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, The Proteobacteria, pp. 546–552. Edited by D. J. Brenner, N. R. Krieg & J. T. Staley. New York: Springer.
  24. Urbanczyk, H., Ast, J. C., Kaeding, A. J., Oliver, J. D. & Dunlap, P. V.(2008). Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae. J Bacteriol 190, 3494–3504.[CrossRef] [Google Scholar]
  25. Wada, M., Kamiya, A., Uchiyama, N., Yoshizawa, S., Kita-Tsukamoto, K., Ikejima, K., Yu, R., Imada, C., Karatani, H. & other authors(2006).LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis. FEMS Microbiol Lett 260, 186–192.[CrossRef] [Google Scholar]
  26. Wimpee, C. F., Nadeau, T. L. & Nealson, K. H.(1991). Development of species-specific hybridization probes for marine luminous bacteria by using in vitro DNA amplification. Appl Environ Microbiol 57, 1319–1324. [Google Scholar]
  27. Xie, C. H. & Yokota, A.(2003). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49, 345–349.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004309-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004309-0
Loading

Data & Media loading...

Supplements

Additional phylogenetic trees based on analysis of the 16S rRNA, , , , , and gene sequences. [ PDF] 211 KB

PDF

Both Tables [ PDF] 94 KB

PDF

Most cited Most Cited RSS feed