1887

Abstract

We have made a polyphasic taxonomic study of strain 5CR, isolated from Fuente de Piedra, Málaga, southern Spain. The strain is a moderately halophilic, Gram-negative rod, oxidase-positive and motile by a single polar flagellum. It does not produce acids from sugars and shows respiratory metabolism, using oxygen, nitrate and nitrite as terminal electron acceptors. It requires NaCl and grows best with 5–7.5 % w/v at temperatures of between 32 and 45 °C within a pH range of 6–8. Its 16S rRNA gene sequence indicates that strain 5CR belongs to the genus in the class . Its closest relatives are , , and , with the type strains of which our strain showed 16S rRNA gene sequence similarity values of 96.7–97.8 %. DNA–DNA hybridization studies between strain 5CR and CECT 5797, the phylogenetically nearest type strain, showed 40 % relatedness. Its G+C content is 65.7 mol%. Its major fatty acids are C 7 (31.36 %), C (25.55 %), C 7/iso-C 2-OH (23.23 %), C cyclo 8 (8.14 %), C 3-OH (5.76 %) and C (2.22 %) and the predominant respiratory lipoquinone is ubiquinone with nine isoprene units (Q-9). The proposed name for the novel species is sp. nov., strain 5CR (=CECT 7341 =LMG 24455) being the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004275-0
2009-06-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1290.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004275-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Vreeland, R. H., Litchfield, C. D., Mormile, M. R., Tindall, B. J., Oren, A., Béjar, V., Quesada, E. & Ventosa, A.(2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57, 2436–2446.[CrossRef] [Google Scholar]
  2. Arias, S., Del Moral, A., Ferrer, M. R., Quesada, E. & Béjar, V.(2003). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7, 319–326.[CrossRef] [Google Scholar]
  3. Ben Ali Gam, Z., Abdelkafi, S., Casalot, L., Tholozan, J. L., Oueslati, R. & Labat, M.(2007).Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend. Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57, 2307–2313.[CrossRef] [Google Scholar]
  4. Berendes, F., Gottschalk, G., Heine-Dobbernack, E., Moore, E. R. B. & Tindall, B. J.(1996).Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19, 158–167.[CrossRef] [Google Scholar]
  5. Bouchotroch, S., Quesada, E., Del Moral, A., Llamas, I. & Béjar, V.(2001).Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef] [Google Scholar]
  6. Callies, E. & Mannheim, E.(1978). Classification of the Flavobacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int J Syst Bacteriol 28, 14–19.[CrossRef] [Google Scholar]
  7. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  8. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  9. Dobson, S. J. & Franzmann, P. D.(1996). Unification of the genera Deleya (Baumann et al. 1993), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef] [Google Scholar]
  10. Euzéby, J. P.(2008).Halomonas Vreeland et al. 1980. In List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr/h/halomonas.html
  11. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E.(1988).Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef] [Google Scholar]
  12. García, M. T., Mellado, E., Ostos, J. C. & Ventosa, A.(2004).Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54, 1723–1728.[CrossRef] [Google Scholar]
  13. Garrity, G. M., Bell, J. A. & Lilburn, T.(2005). Family IV. Halomonadaceae Franzmann, Wehmeyer and Stackebrandt 1989, 205VP emend. Dobson and Franzmann 1996, 558. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, p. 300. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  14. González-Domenech, C. M., Martínez-Checa, F., Quesada, E. & Béjar, V.(2008a).Halomonas cerina sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 58, 803–809.[CrossRef] [Google Scholar]
  15. González-Domenech, C. M., Béjar, V., Martínez-Checa, F. & Quesada, E.(2008b).Halomonas nitroreducens sp. nov., a novel nitrate- and nitrite-reducing species. Int J Syst Evol Microbiol 58, 872–876.[CrossRef] [Google Scholar]
  16. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  17. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  18. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  19. Lind, E. & Ursing, J.(1986). Clinical strains of Enterobacter agglomerans (synonyms, Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand Sect B 94, 205–213. [Google Scholar]
  20. Margesin, R. & Schinner, F.(2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73–83.[CrossRef] [Google Scholar]
  21. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  22. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  23. Martínez-Cánovas, M. J., Quesada, E., Llamas, I. & Béjar, V.(2004a).Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef] [Google Scholar]
  24. Martínez-Cánovas, M. J., Béjar, V., Martínez-Checa, F. & Quesada, E.(2004b).Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54, 1329–1332.[CrossRef] [Google Scholar]
  25. Martínez-Cánovas, M. J., Béjar, V., Martínez-Checa, F., Páez, R. & Quesada, E.(2004c).Idiomarina fontislapidosi sp. nov. and Idiomarina ramblicola sp. nov., isolated from inland hypersaline habitats in Spain. Int J Syst Evol Microbiol 54, 1793–1797.[CrossRef] [Google Scholar]
  26. Martínez-Checa, F., Toledo, F. L., Vílchez, R., Quesada, E. & Calvo, C.(2002). Yield production, chemical composition and functional properties of emulsifier H28 synthesized by Halomonas eurihalina strain H-28 in media containing various hydrocarbons. Appl Microbiol Biotechnol 58, 358–363.[CrossRef] [Google Scholar]
  27. Mata, J. A., Martínez-Cánovas, M. J., Quesada, E. & Béjar, V.(2002). A detailed phenotypic characterization of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef] [Google Scholar]
  28. Mata, J. A., Béjar, V., Llamas, I., Arias, S., Bressollier, P., Tallon, R., Urdaci, M. C. & Quesada, E.(2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 157, 827–835.[CrossRef] [Google Scholar]
  29. Moraine, R. A. & Rogovin, P.(1966). Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8, 511–524.[CrossRef] [Google Scholar]
  30. Ntougias, S., Zervakis, G. I. & Fasseas, C.(2007).Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57, 1975–1983.[CrossRef] [Google Scholar]
  31. Owen, R. J. & Hill, L. R.(1979). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn, pp. 277–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  32. Owen, R. J. & Pitcher, D.(1985). Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. In Chemical Methods in BacterialSystematics, pp. 67–93. Edited by M. Goodfellow & E. Minnikin. London: Academic Press.
  33. Peyton, B. M., Mormile, M. R. & Peterson, N. J.(2001). Nitrate reduction with Halomonas campisalis. Kinetics of denitrification at pH 9 and 12.5 % NaCl. Water Res 35, 4237–4242.[CrossRef] [Google Scholar]
  34. Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1981). Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7, 235–243.[CrossRef] [Google Scholar]
  35. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M.(1966). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef] [Google Scholar]
  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  38. Ventosa, A. & Nieto, J. J.(1995). Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11, 85–94.[CrossRef] [Google Scholar]
  39. Vreeland, R. H.(2005). Genus Halomonas Vreeland, Litchfield, Martin, and Elliot 1980, 494VP emend. Dobson and Franzmann 1996, 557. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, pp. 300–313. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  40. Wang, Y. N., Cai, H., Chi, C. Q., Lu, A. H., Lin, X. G., Jiang, Z. F. & Wu, X. L.(2007).Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57, 1222–1226.[CrossRef] [Google Scholar]
  41. Yoon, J. H., Lee, K. C., Kho, Y. H., Kang, K. H., Kim, C. J. & Park, Y. H.(2002).Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52, 123–130. [Google Scholar]
  42. Yoshie, S., Ogawa, T., Makino, H., Hirosawa, H., Tsuneda, S. & Hirata, A.(2006). Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol 42, 277–283.[CrossRef] [Google Scholar]
  43. Ziemke, F., Manfred, G. H., Lalucat, J. & Rosselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.004275-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004275-0
Loading

Data & Media loading...

Supplements

Dendrogram based on 104 phenotypic characteristics. [PDF](29 KB)

PDF

Transmission electron micrograph of a cell of strain 5CR stained with ruthenium red. Bar, 1 µm.

IMAGE

Phylogenetic tree, based on 16S rRNA gene sequences, showing the position of the novel isolate with respect to other members of the family . The tree was obtained using the maximum-parsimony algorithm. [PDF](31 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error