1887

Abstract

A Gram-negative, aerobic, neutrophilic, coccoid bacterium, strain E4A9, was isolated from a deep-sea sediment sample collected from the East Pacific polymetallic nodule region. 16S rRNA gene sequence analysis showed that the isolate was related to the type strain of (96.0 % sequence similarity). Lower 16S rRNA gene sequence similarities were observed with other members of the genera (94.7 %), (94.0–95.4 %), (94.8 %) and (94.6–95.1 %) of the family . Phylogenetic analysis including all described species of the family and several members of the family revealed that the isolate formed a distinct phylogenetic lineage with the family . Chemotaxonomic analysis revealed ubiquinone-10 as the predominant respiratory quinone, anteiso-C, iso-C and iso-C as major fatty acids, and phosphatidylglycerol as the major polar lipid. The DNA G+C content was 71.5 mol%. The isolate contained carotenoids, but no bacteriochlorophyll . On the basis of phenotypic and genotypic data presented in this study, strain E4A9 represents a novel species in a new genus in the family for which the name gen. nov., sp. nov. is proposed; the type strain is E4A9 (=CGMCC 1.6776=JCM 14846).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004267-0
2009-09-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/9/2247.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004267-0&mimeType=html&fmt=ahah

References

  1. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  2. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  3. Denner, E. B. M., Vybiral, D., Koblížek, M., Kämpfer, P., Busse, H.-J. & Velimirov, B. ( 2002; ). Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52, 1655–1661.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  6. Fuerst, J. A., Hawkins, J. A., Holmes, A., Sly, L. I., Moore, C. J. & Stackebrandt, E. ( 1993; ). Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43, 125–134.[CrossRef]
    [Google Scholar]
  7. Hanada, S., Kawase, Y., Hiraishi, A., Takaichi, S., Matsuura, K., Shimada, K. & Nagashima, K. V. ( 1997; ). Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 47, 408–413.[CrossRef]
    [Google Scholar]
  8. Hiraishi, A., Yonemitsu, Y., Matsushita, M., Shin, Y. K., Kuraishi, H. & Kawahara, K. ( 2002; ). Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 178, 45–52.[CrossRef]
    [Google Scholar]
  9. Ivanova, E. P., Bowman, J. P., Lysenko, A. M., Zhukova, N. V., Gorshkova, N. V., Kuznetsova, T. A., Kalinovskaya, N. I., Shevchenko, L. S. & Mikhailov, V. V. ( 2005; ). Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 28, 123–130.[CrossRef]
    [Google Scholar]
  10. Kamekura, M. & Kates, M. ( 1988; ). Lipids of halophilic archaebacteria. In Halophilic Bacteria II, pp. 25–54. Edited by F. Rodriguez-Valera. Boca Raton: CRC Press.
  11. Kämpfer, P., Steiof, M. & Dott, W. ( 1991; ). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef]
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  15. Kwon, K. K., Woo, J.-H., Yang, S.-H., Kang, J.-H., Kang, S. G., Kim, S.-J., Sato, T. & Kato, C. ( 2007; ). Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 57, 2207–2211.[CrossRef]
    [Google Scholar]
  16. Lee, K.-B., Liu, C.-T., Anzai, Y., Kim, H., Aono, T. & Oyaizu, H. ( 2005; ). The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55, 1907–1919.[CrossRef]
    [Google Scholar]
  17. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  18. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  19. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  20. Rainey, F. A., Silva, J., Nobre, M. F., Silva, M. T. & da Costa, M. S. ( 2003; ). Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 53, 35–41.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Shiba, T. & Simidu, U. ( 1982; ). Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32, 211–217.[CrossRef]
    [Google Scholar]
  23. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  24. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  25. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Oren, A., Zhou, P.-J. & Wu, M. ( 2007a; ). Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57, 717–720.[CrossRef]
    [Google Scholar]
  26. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M. ( 2007b; ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef]
    [Google Scholar]
  27. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M. ( 2008; ). Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef]
    [Google Scholar]
  28. Yoon, J.-H., Kim, H., Kim, I.-G., Kang, K. H. & Park, Y.-H. ( 2003; ). Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53, 1169–1174.[CrossRef]
    [Google Scholar]
  29. Yoon, J.-H., Kang, K. H., Oh, T.-K. & Park, Y.-H. ( 2004a; ). Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1981–1985.[CrossRef]
    [Google Scholar]
  30. Yoon, J.-H., Lee, M.-H. & Oh, T.-K. ( 2004b; ). Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54, 2231–2235.[CrossRef]
    [Google Scholar]
  31. Yoon, J.-H., Oh, T.-K. & Park, Y.-H. ( 2005a; ). Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 71–75.[CrossRef]
    [Google Scholar]
  32. Yoon, J.-H., Kang, K. H., Yeo, S.-H. & Oh, T.-K. ( 2005b; ). Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55, 1167–1170.[CrossRef]
    [Google Scholar]
  33. Yoon, J.-H., Kang, S.-J., Lee, M.-H., Oh, H. W. & Oh, T.-K. ( 2006; ). Porphyrobacter dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 56, 1079–1083.[CrossRef]
    [Google Scholar]
  34. Yurkov, V., Stackebrandt, E., Holmes, A., Fuerst, J. A., Hugenholtz, P., Golecki, J., Gad'on, N., Gorlenko, V. M., Kompantseva, E. I. & Drews, G. ( 1994; ). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44, 427–434.[CrossRef]
    [Google Scholar]
  35. ZoBell, C. E. ( 1941; ). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004267-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004267-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2247 - 2253

Phylogenetic tree based on 16S rRNA gene sequences using the maximum-parsimony method.

Two-dimensional thin-layer chromatogram of the total polar lipids of strain E4A9 .

Absorption spectrum of strain E4A9 cells ultrasonically disrupted in MOPS buffer (a) and then extracted with acetone-methanol solution (b). The cells were grown under aerobic conditions in the light (1) or dark (2) conditions.

[ Combined PDF file] 80 KB

 

 

 

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error