1887

Abstract

A strictly anaerobic, thermophilic bacterium, designated strain B2-1, was isolated from microbial mats colonizing a runoff channel formed by free-flowing thermal water from a Great Artesian Basin, Australia, bore well (registered number 17263). The cells of strain B2-1 were slightly curved rods (3.0–3.5×0.6–0.7 μm) which stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 50 °C (temperature growth range 30–55 °C) and a pH of 8 (pH growth range 6.5–9). Strain B2-1 grew poorly on yeast extract (0.2 %) and/or tryptone (0.2 %), which were obligately required for growth on other energy sources, including a range of other carbohydrates and organic acids, but not amino acids. The end-products of glucose fermentation were ethanol and acetate. In the presence of 0.2 % yeast extract, iron(III), manganese(IV) and elemental sulfur were reduced but sulfate, thiosulfate, sulfite, nitrate and nitrite were not reduced. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin, sodium azide and by NaCl concentrations greater than 4 % (w/v). The DNA G+C content was 48±1 mol% as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain B2-1 was a member of the family , class , phylum and was most closely related to DSM 17957 (89.9 % similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain B2-1 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is B2-1 (=KCTC 5625=JCM 15105=DSM 21119).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004218-0
2009-05-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/964.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004218-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Pignet, P., Zbinden, M., Quillevere, M., Duchiron, F., Donval, J. P., Lesongeur, F., Raguenes, G., Crassous, P. & other authors ( 2002; ). Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1621–1628.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Andrews, K. T. & Patel, B. K. C. ( 1996; ). Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265–269.[CrossRef]
    [Google Scholar]
  4. Brisbarre, N., Fardeau, M. L., Cueff, V., Cayol, J. L., Barbier, G., Cilia, V., Ravot, G., Thomas, P., Garcia, J. L. & Olliver, B. ( 2003; ). Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 53, 1043–1049.[CrossRef]
    [Google Scholar]
  5. Brock, T. D. & Freeze, H. ( 1969; ). Thermus aquaticus gen. nov., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297.
    [Google Scholar]
  6. Cao, X., Liu, X. & Dong, X. ( 2003; ). Alkaliphilus crotonatoxidans sp. nov., a strictly anaerobic, crotonate-dismutating bacterium isolated from a methanogenic environment. Int J Syst Evol Microbiol 53, 971–975.[CrossRef]
    [Google Scholar]
  7. Chrisotomos, S., Patel, B. K. C., Dwivedi, P. P. & Denman, S. E. ( 1996; ). Calormator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Bacteriol 46, 497–501.[CrossRef]
    [Google Scholar]
  8. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M. & Tiedje, J. M. ( 2005; ). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33, D294–D296.
    [Google Scholar]
  9. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  10. Habermahl, M. A. ( 1980; ). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9–38.
    [Google Scholar]
  11. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  12. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  13. Kanso, S. & Patel, B. K. C. ( 2003; ). Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401–406.[CrossRef]
    [Google Scholar]
  14. Kanso, S., Greene, A. C. & Patel, B. K. C. ( 2002; ). Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52, 869–874.[CrossRef]
    [Google Scholar]
  15. Kashefi, K., Holmes, D. E., Baross, J. A. & Lovley, D. R. ( 2003; ). Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69, 2985–2993.[CrossRef]
    [Google Scholar]
  16. Klouche, N., Fardeau, M. L., Lascourreges, J. F., Cayol, J. L., Hacine, H., Thomas, P. & Magot, M. ( 2007; ). Geosporobacter subterraneus gen. nov., sp. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 57, 1757–1761.[CrossRef]
    [Google Scholar]
  17. Love, C. A., Patel, B. K. C., Nichols, P. D. & Stackebrandt, E. ( 1993; ). Desulfotomaculum australicum, sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16, 244–251.[CrossRef]
    [Google Scholar]
  18. Lovley, D. R. ( 1997; ). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305–313.[CrossRef]
    [Google Scholar]
  19. Lovley, D. R. & Phillips, E. J. P. ( 1986; ). Organic matter mineralization with reduction of Ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689.
    [Google Scholar]
  20. Lovley, D. R. & Phillips, E. J. P. ( 1988; ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.
    [Google Scholar]
  21. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  22. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  23. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985a; ). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277–278.[CrossRef]
    [Google Scholar]
  24. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985b; ). Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef]
    [Google Scholar]
  25. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F. ( 2006; ). Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef]
    [Google Scholar]
  26. Redburn, A. C. & Patel, B. K. C. ( 1994; ). Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115, 33–38.[CrossRef]
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Sorensen, J. ( 1982; ). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319–324.
    [Google Scholar]
  29. Spanevello, M. D. ( 2001; ). The phylogeny of prokaryotes associated with Australia's Great Artesian Basin, pp. 198. PhD thesis, School of Biomolecular and Physical Science, Brisbane, Australia: Griffith University.
  30. Spanevello, M. D., Yamamoto, H. & Patel, B. K. C. ( 2002; ). Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52, 795–800.[CrossRef]
    [Google Scholar]
  31. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E. ( 1994; ). Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38, 91–112.[CrossRef]
    [Google Scholar]
  32. Takai, K., Moser, D., Onstott, T. C., Spoelstra, N., Pfiffner, S. M., Dohnalkova, A. & Fredrickson, J. K. ( 2001; ). Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int J Syst Evol Microbiol 51, 1245–1256.
    [Google Scholar]
  33. Van de Peer, Y., Jansen, J., De Rijk, P. & De Wachter, P. ( 1997; ). Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25, 111–116.[CrossRef]
    [Google Scholar]
  34. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
  35. Zeikus, J. G., Hegge, P. W. & Anderson, M. A. ( 1979; ). Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41–48.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004218-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004218-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error