gen. nov., sp. nov., a bacterium of the family , isolated from the green alga Free

Abstract

Two novel aerobic, dark-orange-pigmented, Gram-negative bacterial strains, designated KMM 3531 and KMM 3953, were isolated from the green alga . Analysis of the 16S rRNA gene sequences showed that the strains represented a novel lineage within the family . The most closely related genera with validly published names were , , , , and , with 16S rRNA gene sequence similarities of 93.3–91.8 %. Cells of strains KMM 3531 and KMM 3953 were rod-shaped, motile by gliding and grew at temperatures up to 49 °C. They produced acid from carbohydrates and possessed oxidase, catalase, -galactosidase and agarase activities. The predominant cellular fatty acids were iso-C iso-C 3-OH, iso-C G, summed feature 3 (comprising C 7 and/or iso-С 2-OH), iso-C 9 and iso-C 3-OH. The DNA G+C content was 47–49 mol%. On the basis of phenotypic and genotypic characteristics, strains KMM 3531 and KMM 3953 represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is KMM 3531 (=DSM 19858=JCM 11733=KCTC 22016).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004143-0
2009-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/806.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004143-0&mimeType=html&fmt=ahah

References

  1. Bae, S. S., Kwon, K. K., Yang, S. H., Lee, H. S., Kim, S. J. & Lee, J. H.(2007).Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 57, 1050–1054.[CrossRef] [Google Scholar]
  2. Barbeyron, T., L'Haridon, S., Corre, E., Kloareg, B. & Potin, P.(2001).Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 985–997.[CrossRef] [Google Scholar]
  3. Bernardet, J.-F., Nakagawa, Y. & Holmes, B.(2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef] [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  5. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  6. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  7. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  8. Hiraishi, A.(1992). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213.[CrossRef] [Google Scholar]
  9. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  10. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  11. Kwon, K. K., Lee, Y. K. & Lee, H. K.(2006).Costertonia aggregata gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from a mature biofilm. Int J Syst Evol Microbiol 56, 1349–1353.[CrossRef] [Google Scholar]
  12. Lam, C. & Harder, T.(2007). Marine macroalgae affect abundance and community richness of bacterioplankton in close proximity. J Phycol 43, 874–881.[CrossRef] [Google Scholar]
  13. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  14. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  15. Marshall, K., Joint, I., Callow, M. & Callow, J.(2006). Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microb Ecol 52, 302–310.[CrossRef] [Google Scholar]
  16. Nakagawa, Y. & Yamasato, K.(1993). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139, 1155–1161.[CrossRef] [Google Scholar]
  17. Nakanishi, K., Nishijima, M., Nishimura, M., Kuwano, K. & Saga, N.(1996). Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J Phycol 32, 479–482.[CrossRef] [Google Scholar]
  18. Nedashkovskaya, O. I., Kim, S. B., Han, S. K., Lysenko, A. M., Rohde, M., Rhee, M.-S., Frolova, G. M., Falsen, E., Mikhailov, V. V. & Bae, K. S.(2004a).Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54, 1017–1023.[CrossRef] [Google Scholar]
  19. Nedashkovskaya, O. I., Suzuki, M., Vancanneyt, M., Cleenwerck, I., Lysenko, A. M., Mikhailov, V. V. & Swings, J.(2004b).Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov., novel marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 54, 1643–1648.[CrossRef] [Google Scholar]
  20. Nedashkovskaya, O. I., Suzuki, M., Kim, S. B. & Mikhailov, V. V.(2008).Kriegella aquimaris gen. nov., sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 58, 2624–2628.[CrossRef] [Google Scholar]
  21. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E.(1996). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef] [Google Scholar]
  22. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  23. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  24. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S.(2001). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov., and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef] [Google Scholar]
  25. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  26. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  27. Van de Peer, Y., De Rijk, P., Wuyts, J., Winkelmans, T. & De Wachter, R.(2000). The European small subunit ribosomal RNA database. Nucleic Acids Res 28, 175–176.[CrossRef] [Google Scholar]
  28. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  29. Yoon, J. H., Lee, M. H., Oh, T. K. & Park, Y. H.(2005).Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 55, 1015–1019.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004143-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004143-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed