1887

Abstract

A novel red-pigmented, Gram-negative, motile, fluorescent, rod-shaped strain, DZ0503SBS1, with a single lateral flagellum, was isolated from the intestine of the nematode . Comparative 16S rRNA gene sequence analysis indicated that the strain is a member of the genus , sharing highest sequence similarities with subsp. JCM 11315 (99.8 %), subsp. DSM 30121 (99.5 %) and LMG 22860 (98.3 %). Similarities between the gene sequence of strain DZ0503SBS1 and those of subsp. JCM 11315, subsp. DSM 30121 and LMG 22860 were 98.0, 97.4 and 98.3 %, respectively. DNA–DNA hybridization values of strain DZ0503SBS1 with subsp. JCM 11315, subsp. DSM 30121 and LMG 22860 were 68.2, 65.1 and 53.0 %, respectively. The major isoprenoid quinone of strain DZ0503SBS1 was Q-8 and the predominant fatty acids were C (34.76 %), cyclo-C (20.03 %) and cyclo-C 8 (17.24 %). The cyclo-C 8 content (17.24 %) was significantly different from those found in subsp. JCM 11315 and subsp. DSM 30121. Some characteristics of strain DZ0503SBS1, i.e. fluorescence and its symbiotic association with nematodes, have not been reported previously in any species of the genus . Phenotypic and biochemical characteristics and molecular data show that strain DZ0503SBS1 represents a novel species, for which the name sp. nov. is proposed; the type strain is DZ0503SBS1 (=KCTC 22130 =CGMCC 1.6853).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003871-0
2009-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1603.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003871-0&mimeType=html&fmt=ahah

References

  1. Ajithkumar, B., Ajithkumar, V. P., Iriye, R., Doi, Y. & Sakai, T.(2003). Spore-forming Serratia marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank. Int J Syst Evol Microbiol 53, 253–258.[CrossRef] [Google Scholar]
  2. Akhurst, R. J.(1980). Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121, 303–309. [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  4. Ashelford, K. E., Fry, J. C., Bailey, M. J. & Day, M. J.(2002). Characterization of Serratia isolates from soil, ecological implications and transfer of Serratia proteamaculans subsp. quinovora Grimont et al. 1983 to Serratia quinivorans corrig., sp. nov. Int J Syst Evol Microbiol 52, 2281–2289.[CrossRef] [Google Scholar]
  5. Bhadra, B., Roy, P. & Chakraborty, R.(2005).Serratia ureilytica sp. nov., a novel urea-utilizing species. Int J Syst Evol Microbiol 55, 2155–2158.[CrossRef] [Google Scholar]
  6. Bonifassi, E., Fischer-Le Saux, M., Boemare, N. E., Lanois, A., Laumond, C. & Smart, G.(1999). Gnotobiological study of infective juveniles and symbionts of Steinernema scapterisci: a model to clarify the concept of the natural occurrence of monoxenic associations in entomopathogenic nematodes. J Invertebr Pathol 74, 164–172.[CrossRef] [Google Scholar]
  7. Brenner, D. J.(1984). Family I. Enterobacteriaceae Rahn 1937, Nom. Fam. Cons. Opin. 15, Jud. Comm. 1958, 73; Ewing, Farmer and Brenner 1980, 674; Judicial Commission 1981, 104. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 408–420. Edited by N. R. Krieg & J. G. Holt. Baltimore, MD: Williams & Wilkins.
  8. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F.(1978). Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef] [Google Scholar]
  9. Collins, M. D. & Jones, D.(1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45, 316–354. [Google Scholar]
  10. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  11. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  12. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  13. Gavini, F., Ferragut, C., Izard, D., Trinel, P. A., Leclerc, H., Lefebvre, B. & Mossel, D. A. A.(1979).Serratia fonticola, a new species from water. Int J Syst Bacteriol 29, 92–101.[CrossRef] [Google Scholar]
  14. Gerber, N. N.(1975). Prodigiosin-like pigments. CRC Crit Rev Microbiol 3, 469–485.[CrossRef] [Google Scholar]
  15. Grimont, F. & Grimont, P. A. D.(1992). The genus Serratia. In The Prokaryotes, vol. 3, 2nd edn, pp. 2822–2848. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  16. Grimont, P. A. D., Grimont, F., Richard, C., Davis, B. R., Steigerwalt, A. G. & Brenner, D. J.(1978). Deoxyribonucleic acid relatedness between Serratia plymuthica and other Serratia species with a description of Serratia odorifera sp. nov. (holotype: ICPB 3995). Int J Syst Bacteriol 28, 453–463.[CrossRef] [Google Scholar]
  17. Grimont, P. A. D., Grimont, F. & Starr, M. P.(1979).Serratia ficaria sp. nov., a bacterial species associated with Smyrna figs and the fig wasp Blastophaga psenes. Curr Microbiol 2, 277–282.[CrossRef] [Google Scholar]
  18. Grimont, P. A. D., Grimont, F. & Irino, K.(1982). Biochemical characterization of Serratia liquefaciens sensu stricto, Serratia proteamaculans, and Serratia grimesii sp. nov. Curr Microbiol 7, 69–74.[CrossRef] [Google Scholar]
  19. Grimont, P. A. D., Jackson, T. A., Ageron, E. & Noonan, M. J.(1988).Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub, Costelytra zealandica. Int J Syst Bacteriol 38, 1–6.[CrossRef] [Google Scholar]
  20. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  21. Hearn, W. R., Elson, M. K., Williams, R. H. & Medina-Castro, J.(1970). Prodigiosin [5-(2-pyrryl)-2,2′-dipyrrylmethene] and some substituted prodigiosenes. J Org Chem 35, 142–145.[CrossRef] [Google Scholar]
  22. Hiraishi, A.(1999). Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88, 449–460.[CrossRef] [Google Scholar]
  23. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  24. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  25. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  26. Kumar, S., Tamura, K., Jakobsen, I.-B. & Nei, M.(2001).mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef] [Google Scholar]
  27. Lányí, B.(1987). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67. [Google Scholar]
  28. Li, X., Zhang, D., Chen, F., Ma, J., Dong, Y. & Zhang, L.(2004).Klebsiella singaporensis sp. nov., a novel isomaltulose-producing bacterium. Int J Syst Evol Microbiol 54, 2131–2136.[CrossRef] [Google Scholar]
  29. Mandel, M. & Marmur, J.(1968). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206. [Google Scholar]
  30. Mollet, C., Drancourt, M. & Raoult, D.(1997).rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26, 1005–1011.[CrossRef] [Google Scholar]
  31. Nedashkovskaya, O. I., Kim, S. B., Suzuki, M., Shevchenko, L. S., Lee, M. S., Lee, K. H., Park, M. S., Frolova, G. M., Oh, H. W. & other authors(2005).Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55, 2583–2588.[CrossRef] [Google Scholar]
  32. Park, M., Ryu, S. H., Thi Vu, T.-H., Ro, H.-S., Yun, P.-Y. & Jeon, C. O.(2007).Flavobacterium defluvii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57, 233–237.[CrossRef] [Google Scholar]
  33. Saitou, N. & Nei, M.(1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  34. Sasser, M.(1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16 [Google Scholar]
  35. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  36. Spröer, C., Mendrock, U., Swiderski, J., Lang, E. & Stackebrandt, E.(1999). The phylogenetic position of Serratia, Buttiauxella and some other genera of the familiy Enterobacteriaceae. Int J Syst Bacteriol 49, 1433–1438.[CrossRef] [Google Scholar]
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  38. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  39. Wilson, K.(2001). Preparation of genomic DNA from bacteria: miniprep of bacterial genomic DNA. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.2. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley. doi:10.1002/0471142727.mb0204s56
  40. Yamaguchi, S. & Yokoe, M.(2000). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66, 3337–3343.[CrossRef] [Google Scholar]
  41. Yoon, J.-H., Kim, H., Kim, S.-B., Kim, H.-J., Kim, W. Y., Lee, S. T., Goodfellow, M. & Park, Y.-H.(1996). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46, 502–505.[CrossRef] [Google Scholar]
  42. Zhang, C. X., Liu, J. R., Xu, M. X., Sun, J., Yang, S. Y., An, X., Gao, G. F., Lin, M. S., Lai, R. & other authors(2008).Heterorhabditidoides chongmingensis gen. nov., sp. nov. (Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol 98, 153–168.[CrossRef] [Google Scholar]
  43. Zhou, Y., Wang, X., Liu, H., Zhang, K. Y., Zhang, Y. Q., Lai, R. & Li, W. J.(2007).Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 57, 321–325.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003871-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003871-0
Loading

Data & Media loading...

Supplements

[ Single PDF file] (826 KB)

PDF

[ Single PDF file] (76 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error