1887

Abstract

A novel mesophilic sulfate-reducing bacterium, EMSSDQ , was isolated from olive mill wastewater in the semi-arid region of Morocco (Marrakech). Cells were Gram-negative, catalase-positive, straight rods that were non-motile and non-spore-forming and contained cytochrome and desulfoviridin. The DNA G+C content was 65.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the genus with D41, SPSN, JJ and EDK82 as the most closely related strains with validly published names. In addition to the classical substrates used by species, the isolate oxidized 1,4-tyrosol, one of the most abundant phenolic compounds occurring in olive mill wastewater, to 4-hydroxyphenylacetate without ring cleavage. SPSN was also found to carry out this reaction. Under air, strain EMSSDQ exhibited limited growth on lactate and yeast extract in the absence of sulfate. On the basis of genotypic and phenotypic characteristics, it is proposed that the isolate represents a novel species, sp. nov. The type strain is EMSSDQ (=DSM 19337 =ATCC BAA-1562).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003822-0
2009-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/936.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003822-0&mimeType=html&fmt=ahah

References

  1. Abdelkafi, S., Chamkha, M., Casalot, L., Sayadi, S. & Labat, M. ( 2005; ). Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252, 79–84.[CrossRef]
    [Google Scholar]
  2. Allen, T. D., Kraus, P. F., Lawson, P. A., Drake, G. R., Balkwill, D. L. & Tanner, R. S. ( 2008; ). Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58, 1313–1317.[CrossRef]
    [Google Scholar]
  3. Allouche, N., Damak, M., Ellouz, R. & Sayadi, S. ( 2004; ). Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol 70, 2105–2109.[CrossRef]
    [Google Scholar]
  4. Bak, F. & Pfennig, N. ( 1987; ). Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147, 184–189.[CrossRef]
    [Google Scholar]
  5. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  6. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  7. Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M. A. & Cristinzio, G. ( 1995; ). Antibacterial polyphenols from olive oil mill waste waters. J Appl Bacteriol 79, 393–398.[CrossRef]
    [Google Scholar]
  8. Chamkha, M., Labat, M., Patel, B. K. C. & Garcia, J.-L. ( 2001; ). Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. Int J Syst Evol Microbiol 51, 2049–2054.[CrossRef]
    [Google Scholar]
  9. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  10. Dolla, A., Fournier, M. & Dermoun, Z. ( 2006; ). Oxygen defense in sulfate-reducing bacteria. J Biotechnol 126, 87–100.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  12. Fernandez-Bolanos, J., Felizon, B., Brenes, M., Guillen, R. & Heredia, A. ( 1998; ). Hydroxytyrosol and tyrosol as the main compounds found in the phenolic fraction of steam-exploded olive stones. J Am Oil Chem Soc 75, 1643–1649.[CrossRef]
    [Google Scholar]
  13. Hungate, R. E. ( 1969; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  14. Imhoff-Stuckle, D. & Pfennig, N. ( 1983; ). Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136, 194–198.[CrossRef]
    [Google Scholar]
  15. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  16. Labat, M., Augur, C., Perraud-Gaime, I., Roussos, S. & Sayadi, S. ( 2000; ). Biotechnological potentialities of polyphenolic compounds of coffee and comparison with olive. In Coffee Biotechnology and Quality, pp. 517–531. Edited by T. Sera, C. R. Soccol, A. Pandey & S. Roussos. Dordrecht: Kluwer.
  17. Lesage-Meessen, L., Navarro, D., Maunier, S., Sigoillot, J.-C., Lorquin, J., Delattre, M., Simon, J.-L., Asther, M. & Labat, M. ( 2001; ). Simple phenolic content in olive residues as a function of extraction systems. Food Chem 75, 501–507.[CrossRef]
    [Google Scholar]
  18. Liebgott, P.-P., Labat, M., Casalot, L., Amouric, A. & Lorquin, J. ( 2007; ). Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp. strain HTB24. FEMS Microbiol Lett 276, 26–33.[CrossRef]
    [Google Scholar]
  19. Liebgott, P.-P., Joseph, M., Fardeau, M.-L., Cayol, J.-L., Falsen, E., Chamkh, F., Qatibi, A.-I. & Labat, M. ( 2008; ). Clostridiisalibacter paucivorans gen. nov., sp. nov., a novel moderately halophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 58, 61–67.[CrossRef]
    [Google Scholar]
  20. Loubinoux, J., Valente, F. M. A., Pereira, I. A. C., Costa, A., Grimont, P. A. D. & Le Faou, A. E. ( 2002; ). Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int J Syst Evol Microbiol 52, 1305–1308.[CrossRef]
    [Google Scholar]
  21. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M. ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  22. Mechichi, T., Fardeau, M.-L., Labat, M., Garcia, J.-L., Verhé, F. & Patel, B. K. C. ( 2000; ). Clostridium peptidovorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester. Int J Syst Evol Microbiol 50, 1259–1264.[CrossRef]
    [Google Scholar]
  23. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  24. Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C. & Vincieri, F. F. ( 2001; ). Polyphenolic content in olive oil waste waters and related olive samples. J Agric Food Chem 49, 3509–3514.[CrossRef]
    [Google Scholar]
  25. Nanninga, H. J. & Gottschal, J. C. ( 1987; ). Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53, 802–809.
    [Google Scholar]
  26. Ollivier, B., Cord-Ruwisch, R., Hatchikian, E. C. & Garcia, J. L. ( 1988; ). Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149, 447–450.[CrossRef]
    [Google Scholar]
  27. Ouattara, A. S., Patel, B. K. C., Cayol, J.-L., Cuzin, N., Traore, A. S. & Garcia, J.-L. ( 1999; ). Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio alcoholivorans. Int J Syst Bacteriol 49, 639–643.[CrossRef]
    [Google Scholar]
  28. Qatibi, A. I., Nivière, V. & Garcia, J. L. ( 1991; ). Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol 1,2- and 1,3-propanediol. Arch Microbiol 155, 143–148.[CrossRef]
    [Google Scholar]
  29. Qatibi, A. I., Bennisse, R., Jana, H. & Garcia, J.-L. ( 1998; ). Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol. Curr Microbiol 36, 283–290.[CrossRef]
    [Google Scholar]
  30. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  31. Sakaguchi, T., Arakaki, A. & Matsunaga, T. ( 2002; ). Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52, 215–221.
    [Google Scholar]
  32. Sayadi, S., Allouche, N., Jaoua, M. & Aloui, F. ( 2000; ). Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochem 35, 725–735.[CrossRef]
    [Google Scholar]
  33. Scheline, R. R. ( 1966; ). A rapid synthesis of 3-O-methylgallic acid. Acta Chem Scand 20, 1182 [CrossRef]
    [Google Scholar]
  34. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  35. Thabet, O. B., Fardeau, M. L., Joulian, C., Thomas, P., Hamdi, M., Garcia, J.-L. & Ollivier, B. ( 2004; ). Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10, 185–190.[CrossRef]
    [Google Scholar]
  36. Widdel, F. & Pfennig, N. ( 1981; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129, 395–400.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003822-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003822-0
Loading

Data & Media loading...

Supplements

Phase-contrast photomicrograph (a) and transmission electron photomicrograph (b), showing the absence of flagella, of cells of strain EMSSDQ grown on 10 mM lactate as carbon and energy source in the presence of 20 mM sulfate as electron acceptor and 0.1 g yeast extract l . Phase-contrast photomicroscopy was performed as previously described (Qatibi , 1991) using a photomicroscope (Nikon Eclipse E600) with an oil-immersion objective (×100). Transmission electron photomicroscopy was carried out at the Department of Microbiology, Institute of Biological Sciences, University of Aarhus, Denmark, according to Jakobsen (2006). Bars, 10 µm (a) and 2 µm (b).

IMAGE

Growth of strain EMSSDQ , DSM 5433 , DSM 3604 and DSM 3852 under air in the absence of sulfate. [PDF](26 KB)

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error