1887

Abstract

A methanogenic organism from the domain (SD1) was isolated from saline water released from a coal seam located 926 m below the surface via a methane-producing well near Monroe, Louisiana, USA. Growth and methanogenesis were supported with methanol, monomethylamine, dimethylamine or trimethylamine, but not with dimethylsulfide, formate, acetate or H/CO. Cells grew in high-salt minimal medium but growth was stimulated with yeast extract or tryptone. Cells were single, non-motile, irregular coccoids 0.5–1.0 μm in diameter and the cell wall contained protein. Conditions for the maximum rate of growth were 40–50 °C, 0.2–0.6 M NaCl, 100–≥200 mM MgCl, and pH 7.0–8.0. The G+C content of the genomic DNA was 42±1mol %. A comparison of 16S rRNA gene sequences indicated that strain SD1 was most closely related to DSM 5435 with 96 % gene sequence similarity. It is proposed that strain SD1 represents a novel species, sp. nov. The type strain is SD1 (=ATCC BAA-1601=DSM 21339).

Keyword(s): CBM, coal bed methane
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003772-0
2009-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1064.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003772-0&mimeType=html&fmt=ahah

References

  1. Belyaev, S. S., Wolkin, R., Kenealy, W. R., Deniro, M. J., Epstein, S. & Zeikus, J. G.(1983). Methanogenic bacteria from the bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45, 691–697. [Google Scholar]
  2. Chapelle, F. H., O'Neill, K., Bradley, P. M., Methe, B. A., Ciufo, S. A., Knobel, L. L. & Lovley, D. R.(2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315.[CrossRef] [Google Scholar]
  3. Cheng, L., Qiu, T. L., Yin, X. B., Wu, X. L., Hu, G. Q., Deng, Y. & Zhang, H.(2007).Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int J Syst Evol Microbiol 57, 2964–2969.[CrossRef] [Google Scholar]
  4. Ferry, J. G. & Wolfe, R. S.(1976). Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107, 33–40.[CrossRef] [Google Scholar]
  5. Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D. & Jeanthon, C.(2005). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54, 427–443.[CrossRef] [Google Scholar]
  6. Hales, B. A. & Winstanley, C.(1996). Sequencing of (dA:dT) cloned mixed PCR products from microbial populations. Methods Mol Biol 65, 209–218. [Google Scholar]
  7. Hungate, R. E.(1969). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132. [Google Scholar]
  8. Kimura, H., Sugihara, M., Yamamoto, H., Patel, B. K., Kato, K. & Hanada, S.(2005). Microbial community in a geothermal aquifer associated with the subsurface of the Great Artesian Basin, Australia. Extremophiles 9, 407–414.[CrossRef] [Google Scholar]
  9. Kotelnikova, S., Macario, A. J. & Pedersen, K.(1998).Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48, 357–367.[CrossRef] [Google Scholar]
  10. Mandel, M. & Marmur, J.(1968). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206. [Google Scholar]
  11. McInerney, J. O., Wilkinson, M., Patching, J. W., Embley, T. M. & Powell, R.(1995). Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol 61, 1646–1648. [Google Scholar]
  12. McIntosh, J. C., Warwick, P. D., Martini, A. M. & Osborn, S. G.(2007). Coupled hydrology and biogeochemistry of Paleocene-Eocene coal beds, northern Gulf of Mexico, abstract. In Geological Society of America Abstracts with Programs, 257.
  13. Miller, T. L. & Wolin, M. J.(1974). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27, 985–987. [Google Scholar]
  14. Mochimaru, H., Uchiyama, H., Yoshioka, H., Imachi, H., Hoaki, T., Tamaki, H., Nakamura, K., Sekiguchi, Y. & Kamagata, Y.(2007a). Methanogen diversity in deep subsurface gas-associated water at the Minami-Kanto gas field in Japan. Geomicrobiol J 24, 93–100.[CrossRef] [Google Scholar]
  15. Mochimaru, H., Yoshioka, H., Tamaki, H., Nakamura, K., Kaneko, N., Sakata, S., Imachi, H., Sekiguchi, Y., Uchiyama, H. & Kamagata, Y.(2007b). Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. Extremophiles 11, 453–461.[CrossRef] [Google Scholar]
  16. Moser, D. P., Gihring, T. M., Brockman, F. J., Fredrickson, J. K., Balkwill, D. L., Dollhopf, M. E., Lollar, B. S., Pratt, L. M., Boice, E. & other authors(2005).Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71, 8773–8783.[CrossRef] [Google Scholar]
  17. Ni, S. S. & Boone, D. R.(1991). Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol 41, 410–416.[CrossRef] [Google Scholar]
  18. Nilsen, R. K. & Torsvik, T.(1996).Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62, 728–731. [Google Scholar]
  19. Ollivier, B., Cayol, J. L., Patel, B. K., Magot, M., Fardeau, M. L. & Garcia, J. L.(1997).Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147, 51–56.[CrossRef] [Google Scholar]
  20. Orphan, V. J., Taylor, L. T., Hafenbradl, D. & Delong, E. F.(2000). Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66, 700–711.[CrossRef] [Google Scholar]
  21. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  22. Scott, A. R.(1999). Improving coal gas recovery with microbially enhanced coalbed methane. In Coalbed Methane: Scientific, Environmental and Economic Evaluation, pp. 89–110. Edited by M. Mastalerz, M. Glikson & S. D. Golding. Dordrecht: Kluwer.
  23. Shimada, M.(1995). State of the art of coalbed methane development. J Min Mater Process Inst Jpn 111, 135–143. [Google Scholar]
  24. Shimizu, S., Akiyama, M., Naganuma, T., Fujioka, M., Nako, M. & Ishijima, Y.(2007). Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology 5, 423–433.[CrossRef] [Google Scholar]
  25. Smith, J. W. & Pallasser, R. J.(1996). Microbial origin of Australian coalbed methane. Am Assoc Pet Geol Bull 80, 891–897. [Google Scholar]
  26. Sowers, K. R., Baron, S. F. & Ferry, J. G.(1984).Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47, 971–978. [Google Scholar]
  27. Sowers, K. R., Boone, J. E. & Gunsalus, R. P.(1993). Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59, 3832–3839. [Google Scholar]
  28. Springer, E., Sachs, M. S., Woese, C. R. & Boone, D. R.(1995). Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45, 554–559.[CrossRef] [Google Scholar]
  29. Takai, K., Mormile, M. R., McKinley, J. P., Brockman, F. J., Holben, W. E., Kovacik, W. P., Jr & Fredrickson, J. K.(2003). Shifts in archaeal communities associated with lithological and geochemical variations in subsurface Cretaceous rock. Environ Microbiol 5, 309–320.[CrossRef] [Google Scholar]
  30. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  31. Warwick, P. D. & MacIntosh, J. C.(2007). Microbial origin of Wilcox group gas in northern Louisiana. In Geological Society of America Abstracts with Programs, 256.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003772-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003772-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1064 - 1069

Factors influencing the growth rate of sp. nov. SD1T. [ PDF]36 KB



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error