1887

Abstract

Dissimilatory iron reduction plays a significant role in subsurface environments. Currently, it is assumed that members of the genus constitute the majority of the iron-reducing micro-organisms that oxidize aromatic compounds in contaminated subsurface environments. Here, we report the isolation of two phylogenetically distinct pure cultures of iron-reducing degraders of monoaromatic hydrocarbons, strain TMJ1, which belongs to the genus within the , and strain UKTL, belonging to the genus within the . Both strains utilize a wide range of substrates as carbon and energy sources, including the aromatic compounds toluene, phenol and -cresol. Additionally, strain UKTL utilizes -xylene and TMJ1 utilizes -cresol. Anaerobic degradation of toluene in both strains and -xylene in strain UKTL is initiated by activation with fumarate addition to the methyl group. The genomic DNA G+C contents of strains TMJ1 and UKTL are 54.4 and 47.7 mol%, respectively. Based on a detailed physiological characterization and phylogenetic analysis of the 16S rRNA genes of both strains, we propose the names sp. nov. (type strain UKTL =DSM 19510 =JCM 15765) and sp. nov. (type strain TMJ1 =DSM 19350 =JCM 15764) to accommodate these strains. To the best of our knowledge, strain UKTL is the first described spore-forming, iron-reducing bacterium that can degrade aromatic hydrocarbons.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003525-0
2010-03-01
2021-04-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/686.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003525-0&mimeType=html&fmt=ahah

References

  1. Anderson R. T., Lovley D. R. 1999; Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediat J 3:121–135 [CrossRef]
    [Google Scholar]
  2. Anderson R. T., Rooney-Varga J. N., Gaw C. V., Lovley D. R. 1998; Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32:1222–1229
    [Google Scholar]
  3. Balashova V. V., Zavarzin G. A. 1979; Anaerobic reduction of ferric iron by hydrogen bacteria. Mikrobiologiia 48:773–778 (in Russian
    [Google Scholar]
  4. Beller H. R., Spormann A. M. 1997; Anaerobic activation of toluene and o- xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179:670–676
    [Google Scholar]
  5. Biegert T., Fuchs G., Heider J. 1996; Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668 [CrossRef]
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
    [Google Scholar]
  7. Bond D. R., Lovley D. R. 2002; Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124 [CrossRef]
    [Google Scholar]
  8. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  10. Chakraborty R., Coates J. D. 2004; Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446
    [Google Scholar]
  11. Christensen T. H., Kjeldsen P., Bjerg P. L., Jensen D. L., Christensen J. B., Baun A., Albrechtsen H.-J., Heron G. 2001; Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718 [CrossRef]
    [Google Scholar]
  12. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  13. Coates J. D., Ellis D. J., Blunt-Harris E. L., Gaw C. V., Roden E. E., Lovley D. R. 1998; Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64:1504–1509
    [Google Scholar]
  14. Coates J. D., Bhupathiraju V. K., Achenbach L. A., McInerney M. J., Lovley D. R. 2001; Geobacter hydrogenophilus , Geobacter chapellei and Geobacter grbiciae , three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588
    [Google Scholar]
  15. Coleman M. L., Hedrick D. B., Lovley D. R., White D. C., Pye K. 1993; Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361:436–438 [CrossRef]
    [Google Scholar]
  16. Cummings D. E., Snoeyenbos-West O. L., Newby D. T., Niggemyer A. M., Lovley D. R., Achenbach L. A., Rosenzweig R. F. 2003; Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46:257–269
    [Google Scholar]
  17. Curtis P. D., Geyer R., White D. C., Shimkets L. J. 2006; Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ Microbiol 8:1935–1949 [CrossRef]
    [Google Scholar]
  18. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695
    [Google Scholar]
  19. Geyer R., Peacock A. D., White D. C., Cory L., van Berkel G. J. 2004; Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrophotometric analysis of microbial respiratory ubiquinones and menaquinones. J Mass Spectrom 39:922–929 [CrossRef]
    [Google Scholar]
  20. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. 1985; Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Lett 31:147–158 [CrossRef]
    [Google Scholar]
  21. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. 2002; Pelotomaculum thermopropionicum gen. nov., sp. nov. an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735 [CrossRef]
    [Google Scholar]
  22. Kostka J. E., Dalton D. D., Skelton H., Dollhopf S., Stucki J. W. 2002; Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl Environ Microbiol 68:6256–6262
    [Google Scholar]
  23. Kunapuli U., Lueders T., Meckenstock R. U. 2007; The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1:643–653
    [Google Scholar]
  24. Leuthner B., Leutwein C., Schulz H., Hörth P., Haehnel W., Schiltz E., Schägger H., Heider J. 1998; Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica : a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628 [CrossRef]
    [Google Scholar]
  25. Lin B., Braster M., van Breukelen B. M., van Verseveld H. W., Westerhoff H. V., Röling W. F. M. 2005; Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill. Appl Environ Microbiol 71:5983–5991 [CrossRef]
    [Google Scholar]
  26. Liu A., Garcia-Dominguez E., Rhine E. D., Young L. Y. 2004; A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48:323–332 [CrossRef]
    [Google Scholar]
  27. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J. P., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  28. Lovley D. R., Anderson R. T. 2000; Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol J 8:77–88 [CrossRef]
    [Google Scholar]
  29. Lovley D. R., Phillips E. J. P. 1986; Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  30. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov. a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344 [CrossRef]
    [Google Scholar]
  31. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  32. Lueders T., Manefield M., Friedrich M. W. 2004; Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78
    [Google Scholar]
  33. Mesbah T., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  34. Morasch B., Annweiler E., Warthmann R. J., Meckenstock R. U. 2000; The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites: degradation of naphthalene, o- , and m- xylene by sulfate-reducing bacteria. J Microbiol Methods 44:183–191
    [Google Scholar]
  35. Morasch B., Schink B., Tebbe C. C., Meckenstock R. U. 2004; Degradation of o -xylene and m -xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum . Arch Microbiol 181:407–417 [CrossRef]
    [Google Scholar]
  36. Nevin K. P., Holmes D. E., Woodard T. L., Hinlein E. S., Ostendorf D. W., Lovley D. R. 2005; Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55:1667–1674 [CrossRef]
    [Google Scholar]
  37. Ramamoorthy S., Sass H., Langer H., Schumann P., Kroppenstedt R. M., Spring S., Overmann J., Rosenzweig R. F. 2006; Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736
    [Google Scholar]
  38. Roberts J. L. 1947; Reduction of ferric hydroxide by strains of Bacillus polymyxa . Soil Sci 63:135–140
    [Google Scholar]
  39. Robertson W. J., Franzmann P. D., Mee B. J. 2000; Spore-forming, Desulfosporosinus -like sulphate-reducing bacteria from a shallow aquifer contaminated with gasoline. J Appl Microbiol 88:248–259
    [Google Scholar]
  40. Robertson W. J., Bowman J. P., Franzmann P. D., Mee B. J. 2001; Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140
    [Google Scholar]
  41. Rooney-Varga J. N., Anderson R. T., Fraga J. L., Ringelberg D., Lovley D. R. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063
    [Google Scholar]
  42. Sanford R. A., Cole J. R., Löffler F. E., Tiedje J. M. 1996; Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808
    [Google Scholar]
  43. Shelobolina E. S., Nevin K. P., Blakeney-Hayward J. D., Johnsen C. V., Plaia T. W., Krader P., Woodard T., Holmes D. E., Gaw VanPraagh C., Lovley D. R. 2007 Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Int J Syst Evol Microbiol 57, 126–135 [CrossRef]
  44. Shelobolina E. S., Vrionis H. A., Findlay R. H., Lovley D. R. 2008; Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. Int J Syst Evol Microbiol 58:1075–1078 [CrossRef]
    [Google Scholar]
  45. Spring S., Rosenzweig F. 2006; The genera Desulfitobacterium and Desulfosporosinus : taxonomy. In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 4 pp 771–786 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  46. Stackebrandt E., Sproer C., Rainey F. A., Burghardt J., Päuker O., Hippe H. 1997; Phylogenetic analysis of the genus Desulfotomaculum : evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139 [CrossRef]
    [Google Scholar]
  47. Stackebrandt E., Schumann P., Schüler E., Hippe H. 2003; Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. Int J Syst Evol Microbiol 53:1439–1443 [CrossRef]
    [Google Scholar]
  48. Stookey L. L. 1970; Ferrozine – a new spectrophotometric reagent for iron. Anal Chem 42:779–781 [CrossRef]
    [Google Scholar]
  49. Straub K. L., Buchholz-Cleven B. E. E. 2001; Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria. Int J Syst Evol Microbiol 51:1805–1808 [CrossRef]
    [Google Scholar]
  50. Straub K. L., Schink B. 2004; Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl Environ Microbiol 70:5744–5749 [CrossRef]
    [Google Scholar]
  51. Straub K. L., Hanzlik M., Buchholz-Cleven B. E. E. 1998; The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21:442–449 [CrossRef]
    [Google Scholar]
  52. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  53. Sung Y., Fletcher K. E., Ritalahti K. A., Apkarian R. P., Ramos-Hernández N., Sanford R. A., Mesbah N. M., Löffler F. E. 2006; Geobacter lovleyi sp. nov. strain SZ, a new metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782 [CrossRef]
    [Google Scholar]
  54. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  55. Thamdrup B. 2000; Bacterial manganese and iron reduction in aquatic sediments. Adv Microb Ecol 16:61–84
    [Google Scholar]
  56. Villemur R., Lanthier M., Beaudet R., Lépine F. 2006; The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733 [CrossRef]
    [Google Scholar]
  57. Weber K. A., Achenbach L. A., Coates J. D. 2006; Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764 [CrossRef]
    [Google Scholar]
  58. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  59. White D. C., Ringelberg D. B. 1998; Signature lipid biomarker analysis. In Techniques in Microbial Ecology pp 255–272 Edited by Burlage R. S., Atlas R., Stahl D., Geesey G., Sayler G. New York: Oxford University Press;
    [Google Scholar]
  60. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  61. Winderl C., Schaefer S., Lueders T. 2007; Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase ( bssA ) genes as a functional marker. Environ Microbiol 9:1035–1046 [CrossRef]
    [Google Scholar]
  62. Zamfirescu D., Grathwohl P. 2001; Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site. J Contam Hydrol 53:407–427 [CrossRef]
    [Google Scholar]
  63. Zavarzina D. G., Sokolova T. G., Tourova T. P., Chernyh N. A., Kostrikina N. A., Bonch-Osmolovskaya E. A. 2007; Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:1–7 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003525-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003525-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error