1887

Abstract

A Gram-negative, heterotrophic, aerobic, pale orange-pigmented, non-endospore-forming and motile bacterial strain, designated strain SP8, was isolated from a salty water sample from the solar salterns of Santa Pola, located on the Mediterranean coast of Spain. The strain grew optimally at 37 °C, pH 6.5 and in the presence of 10 % NaCl. A polyphasic taxonomic study was conducted in order to characterize the strain in detail. Phylogenetic analyses based on 16S rRNA gene sequence comparisons indicated that strain SP8 clustered within the branch constituted by species of the genus . The closest phylogenetic neighbours of strain SP8 were LMG 20969 (96.0 % sequence similarity), AAP (95.9 %) and 5AG (95.8 %). Phenotypic features, the fatty acid profile and the DNA G+C content of the novel strain further supported its placement in the genus . On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, it is suggested that strain SP8 represents a novel species for which the name sp. nov. is proposed. The type strain is SP8 (=CECT 7331=CCM 7522=DSM 19980).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003509-0
2009-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/578.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003509-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A.(2002a). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249. [Google Scholar]
  2. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H. & Ventosa, A.(2002b). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207–211.[CrossRef] [Google Scholar]
  3. Arahal, D. R., Vreeland, R. H., Litchfield, C. D., Mormile, M. R., Tindall, B. J., Oren, A., Bejar, V., Quesada, E. & Ventosa, A.(2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57, 2436–2446.[CrossRef] [Google Scholar]
  4. Ben Ali Gam, Z., Abdelkafi, S., Casalot, L., Tholozan, J. L., Oueslati, R. & Labat, M.(2007).Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57, 2307–2313.[CrossRef] [Google Scholar]
  5. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  6. Dobson, S. J. & Franzmann, P. D.(1996). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) in to a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef] [Google Scholar]
  7. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E.(1988).Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef] [Google Scholar]
  8. Garriga, M., Ehrmann, M. A., Arnau, J., Hugas, M. & Vogel, R. F.(1998).Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48, 677–686.[CrossRef] [Google Scholar]
  9. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  10. Heyrman, J., Balcaen, A., De Vos, P. & Swings, J.(2002).Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 52, 2049–2054.[CrossRef] [Google Scholar]
  11. Huang, X. & Madan, A.(1999). CAP3: A DNA sequence assembly program. Genome Res 9, 868–877.[CrossRef] [Google Scholar]
  12. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  13. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenernegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H.(1998). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef] [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  15. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  16. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  17. Martínez-Cánovas, M. J., Quesada, E., Llamas, I. & Béjar, V.(2004).Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef] [Google Scholar]
  18. Mata, J. A., Martínez-Canovas, M. J., Quesada, E. & Béjar, V.(2002). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef] [Google Scholar]
  19. Miller, L. T.(1982). Single derivation method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  20. Ntougias, S., Zervakis, G. I. & Fasseas, C.(2007).Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57, 1975–1983.[CrossRef] [Google Scholar]
  21. Okamoto, T., Taguchi, H., Nakamura, K., Ikenaga, H., Kuraishi, H. & Yamasato, K.(1993).Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160, 333–337. [Google Scholar]
  22. Owen, R. J. & Hill, L. R.(1979). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Chemical Methods for Microbiologists, pp. 277–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  23. Reysenbach, A. L., Longnecker, K. & Kirshtein, J.(2000). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef] [Google Scholar]
  24. Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1982). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968. [Google Scholar]
  25. Ventosa, A., Gutiérrez, M. A., García, M. T. & Ruiz-Berraquero, F.(1989). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef] [Google Scholar]
  26. Ventosa, A., Nieto, J. J. & Oren, A.(1998). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544. [Google Scholar]
  27. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E.(1980).Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003509-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003509-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 578 - 582

Phylogenetic trees, based on neighbour-joining and maximum-likelihood analysis of the 16S rRNA gene sequences, showing the position of strain SP8 and closely related species. [ PDF] 53 KB



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error