1887

Abstract

Seven non-motile, facultatively anaerobic, alginolytic marine bacteria were isolated from the cultured clams and . Phylogenetic analysis based on 16S rRNA gene sequences showed that these marine bacteria were closely related to the recently described species , and (≥99.0 % sequence similarity). Phylogenetic analysis based on the housekeeping genes , and grouped the isolates together and allocated them to the species group. Amplified fragment length polymorphism DNA fingerprinting also grouped them together and enabled them to be differentiated from recognized species of the clade. DNA–DNA hybridizations showed that the isolates belonged to a novel species; phenotypic features such as the ability to grow at 4 °C and in the presence of 6 % NaCl also enabled them to be separated from other species. The DNA G+C content of RD 15.11 is 44.4 mol%. The genotypic and phenotypic data showed that the isolates represent a novel species in the clade. The name sp. nov. is proposed, with RD 15.11 (=CECT 7222 =LMG 23858) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003434-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1589.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003434-0&mimeType=html&fmt=ahah

References

  1. Beaz Hidalgo, R., Cleenwerck, I., Balboa, S., De Wachter, M., Thompson, F. L., Swings, J., De Vos, P. & Romalde, J. L.(2008). Diversity of vibrios associated with reared clams in Galicia (NW Spain). Syst Appl Microbiol 31, 215–222.[CrossRef] [Google Scholar]
  2. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J.(2002). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1558.[CrossRef] [Google Scholar]
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  4. Farmer, J. J., III(1992). The family Vibrionaceae. In The Prokaryotes: a Handbook on the Biology of Bacteria, 2nd edn, pp. 2938–2951. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer-Verlag.
  5. Gómez-León, J., Villamil, L., Lemos, M. L. & Novoa, B.(2005). Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl Environ Microbiol 71, 98–104.[CrossRef] [Google Scholar]
  6. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K.(1998). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef] [Google Scholar]
  7. Hayashi, K., Moriwaki, J., Sawabe, T., Thompson, F. L., Swings, J., Gudkovs, N., Christen, R. & Ezura, Y.(2003).Vibrio superstes sp. nov., isolated from the gut of Australian abalones Haliotis laevigata and Haliotis rubra. Int J Syst Evol Microbiol 53, 1813–1817.[CrossRef] [Google Scholar]
  8. Heimbrook, M. E., Wang, W. L. & Campbell, G.(1989). Staining bacterial flagella easily. J Clin Microbiol 27, 2612–2615. [Google Scholar]
  9. Kueh, C. S. W. & Chan, K. Y.(1985). Bacteria in bivalve shellfish with special reference to the oyster. J Appl Bacteriol 59, 41–47.[CrossRef] [Google Scholar]
  10. Lemos, M. L., Toranzo, A. E. & Barja, J. L.(1985). Modified medium for the oxidation–fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541–1543. [Google Scholar]
  11. MacFaddin, J. F.(1993).Pruebas Bioquímicas para la Identificación de Bacterias de Importancia Clínica (translation by Médica Panamericana SA). Baltimore, MD: William & Wilkins (in Spanish).
  12. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  13. Nhung, P. H., Shah, M. M., Ohkusu, K., Noda, M., Hata, H., Sun, X. S., Goto, K., Masaki, T., Miyasaka, J. & Ezaki, T.(2007). The dnaJ gene as a novel phylogenetic marker for identification of Vibrio species. Syst Appl Microbiol 30, 309–315.[CrossRef] [Google Scholar]
  14. Prado, S.(2006).Microbiota asociada a criaderos de moluscos patogénesis y probiosis. PhD thesis, Universidad de Santiago de Compostela, Spain.
  15. Prado, S., Romalde, J. L., Montes, J. & Barja, J. L.(2005). Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. Dis Aquat Organ 67, 209–215.[CrossRef] [Google Scholar]
  16. Pujalte, M.-J., Ortigosa, M., Urdaci, M.-C., Garay, E. & Grimont, P. A. D.(1993).Vibrio mytili sp. nov., from mussels. Int J Syst Bacteriol 43, 358–362.[CrossRef] [Google Scholar]
  17. Romalde, J. L. & Toranzo, A. E.(1991). Evaluation of the API 20E system for the routine diagnosis of the enteric redmouth disease. Bull Eur Assoc Fish Pathol 11, 147–149. [Google Scholar]
  18. Sawabe, T., Oda, Y., Shiomi, Y. & Ezura, Y.(1995). Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb Ecol 30, 192–202. [Google Scholar]
  19. Sawabe, T., Sugimura, I., Ohtsuka, M., Nakano, K., Tajima, K., Ezura, Y. & Christen, R.(1998).Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of the abalone Haliotis discus hannai. Int J Syst Bacteriol 48, 573–580.[CrossRef] [Google Scholar]
  20. Sawabe, T., Thompson, F. L., Heyrman, J., Cnockaert, M., Hayashi, K., Tanaka, R., Yoshimizu, M., Hoste, B., Swings, J. & Ezura, Y.(2002). Fluorescent amplified fragment length polymorphism (FAFLP) and repetitive extragenic palindrome-PCR fingerprinting reveal host-specific genetic diversity of Vibrio halioticoli-like strains isolated from the gut of Japanese abalone. Appl Environ Microbiol 68, 4140–4144.[CrossRef] [Google Scholar]
  21. Sawabe, T., Setoguchi, N., Inoue, S., Tanaka, R., Ootsubo, M., Yoshimizu, M. & Ezura, Y.(2003). Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone–V. halioticoli association. Aquaculture 219, 671–679.[CrossRef] [Google Scholar]
  22. Sawabe, T., Hayashi, K., Moriwaki, J., Fukui, Y., Thompson, F. L., Swings, J. & Christen, R.(2004a).Vibrio neonatus sp. nov., and Vibrio ezurae sp. nov. isolated from the gut of Japanese abalones. Syst Appl Microbiol 27, 527–534.[CrossRef] [Google Scholar]
  23. Sawabe, T., Hayashi, K., Moriwaki, J., Thompson, F. L., Swings, J., Potin, P., Christen, R. & Ezura, Y.(2004b).Vibrio gallicus sp. nov., isolated from the gut of the French abalone Haliotis tuberculata. Int J Syst Evol Microbiol 54, 843–846.[CrossRef] [Google Scholar]
  24. Sawabe, T., Fujimura, Y., Niwa, K. & Aono, H.(2007a).Vibrio comitans sp. nov., Vibrio rarus sp. nov. and Vibrio inusitatus sp. nov., from the gut of the abalones Haliotis discus discus, H. gigantea, H. madaka and H. rufescens. Int J Syst Evol Microbiol 57, 916–922.[CrossRef] [Google Scholar]
  25. Sawabe, T., Kita-Tsukamoto, K. & Thompson, F. L.(2007b). Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189, 7932–7936.[CrossRef] [Google Scholar]
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  27. Thompson, F. L., Hoste, B., Vandemeulebroecke, K. & Swings, J.(2001). Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24, 520–538.[CrossRef] [Google Scholar]
  28. Thompson, C. C., Thompson, F. L., Vandemeulebroecke, K., Hoste, B., Dawyndt, P. & Swings, J.(2004). Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54, 919–929.[CrossRef] [Google Scholar]
  29. Thompson, F. L., Gevers, D., Thompson, C. C., Dawyndt, P., Naser, S., Hoste, B., Munn, C. B. & Swings, J.(2005). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71, 5107–5115.[CrossRef] [Google Scholar]
  30. Thompson, C. C., Thompson, F. L., Vicente, A. C. & Swings, J.(2007). Phylogenetic analysis of vibrios and related species by means of atpA gene sequences. Int J Syst Evol Microbiol 57, 2480–2484.[CrossRef] [Google Scholar]
  31. West, P. A., Brayton, P. R., Bryant, T. N. & Colwell, R. R.(1986). Numerical taxonomy of vibrios isolated from aquatic environments. Int J Syst Bacteriol 36, 531–543.[CrossRef] [Google Scholar]
  32. Wilson, K.(1987). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing and Wiley Interscience.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003434-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003434-0
Loading

Data & Media loading...

Supplements

for 16S rRNA, , and gene sequences determined in this study [ PDF] (31 KB)

PDF

Variable phenotypic characteristics of the seven isolates of sp. nov. [ PDF] (33 KB)

PDF

[ Single PDf file] (196 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error