1887

Abstract

A novel lactic acid bacterium, strain MIC1-18, was isolated from crude oil collected at an oil–water well in Akita, Japan. Cells of strain MIC1-18 were found to be facultatively anaerobic, mesophilic, neutrophilic, Gram-negative, non-sporulating, motile by means of peritrichous flagella and oval rods, 1.8–2.5 μm long. Optimum growth was observed at 30 °C, pH 7.0 and 3 % (w/v) NaCl. Strain MIC1-18 produced acid from -arabinose, ribose, glucose, fructose, mannose, -acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, sucrose, trehalose, gentiobiose and 5-ketogluconate. -Lactic acid was the major end product from glucose. The major cellular fatty acid was C 7. The cell-wall murein type was A4 containing Lys–Glu. The G+C content of the genomic DNA was 37.8 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that strain MIC1-18 was accommodated as a member of the lactic acid bacteria of the low-G+C content Gram-positive bacteria; the closest neighbour of this organism was CCUG 48253, with only 90.0 % sequence similarity. On the basis of the phenotypic features and phylogenetic position, a novel genus and species, gen. nov., sp. nov., are proposed for strain MIC1-18 (=NBRC 101988=DSM 19658).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003293-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/775.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003293-0&mimeType=html&fmt=ahah

References

  1. Adachi, J. & Hasegawa, M.(1995). Improved dating of the human chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino-acid sites. J Mol Evol 40, 622–628.[CrossRef] [Google Scholar]
  2. Aguirre, M. & Collins, M. D.(1992). Phylogenetic analysis of Alloiococcus otitis gen. nov., sp. nov., an organism from human middle ear fluid. Int J Syst Bacteriol 42, 79–83.[CrossRef] [Google Scholar]
  3. Aguirre, M., Morrison, D., Cookson, B. D., Gay, F. W. & Collins, M. D.(1993). Phenotypic and phylogenetic characterization of some Gemella-like organisms from human infections: description of Dolosigranulum pigrum gen. nov., sp. nov. J Appl Bacteriol 75, 608–612.[CrossRef] [Google Scholar]
  4. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  5. Collins, M. D., Farrow, J. A. E., Phillips, B. A., Ferusu, S. & Jones, D.(1987). Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 37, 310–316.[CrossRef] [Google Scholar]
  6. Collins, M. D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J. A. E., Martinez-Murcia, A., Phillips, B. A., Williams, A. M. & Wallbanks, S.(1991). Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77, 5–12.[CrossRef] [Google Scholar]
  7. Collins, M. D., Hutson, R. A., Foster, G., Falsen, E. & Weiss, N.(2002).Isobaculum melis gen. nov., sp. nov., a Carnobacterium-like organism isolated from the intestine of a badger. Int J Syst Evol Microbiol 52, 207–210. [Google Scholar]
  8. Collins, M. D., Higgins, R., Messier, S., Fortin, M., Hutson, R. A., Lawson, P. A. & Falsen, E.(2003).Allofustis seminis gen. nov., sp. nov., a novel Gram-positive, catalase-negative, rod-shaped bacterium from pig semen. Int J Syst Evol Microbiol 53, 811–814.[CrossRef] [Google Scholar]
  9. Collins, M. D., Wiernik, A., Flasen, E. & Lawson, P. A.(2005).Atopococcus tabaci gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium isolated from tobacco. Int J Syst Evol Microbiol 55, 1693–1696.[CrossRef] [Google Scholar]
  10. Cotta, M. A., Whitehead, T. R., Collins, M. D. & Lawson, P. A.(2004).Atopostipes suicloacale gen. nov., sp. nov., isolated from an underground swine manure storage pit. Anaerobe 10, 191–195.[CrossRef] [Google Scholar]
  11. Faden, H. & Dryja, D.(1989). Recovery of a unique bacterial organism in human middle ear fluid and its possible role in chronic otitis media. J Clin Microbiol 27, 2488–2491. [Google Scholar]
  12. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  13. Hammes, W. P., Bantleon, A. & Min, S.(1990). Lactic acid bacteria in meat fermentation. FEMS Microbiol Rev 87, 165–174.[CrossRef] [Google Scholar]
  14. Iino, T., Mori, K., Tanaka, K., Suzuki, K. & Harayama, S.(2007).Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 57, 1840–1845.[CrossRef] [Google Scholar]
  15. Ishikawa, M., Nakajima, K., Yanagi, M., Yamamoto, Y. & Yamasato, K.(2003).Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53, 711–720.[CrossRef] [Google Scholar]
  16. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  17. Liu, J.-R., Tanner, R. S., Schumann, P., Weiss, N., McKenzie, C. A., Janssen, P. H., Seviour, E. M., Lawson, P. A., Allen, T. D. & Seviour, R. J.(2002). Emended description of the genus Trichococcus, description of Trichococcus collinsii sp. nov., and reclassification of Lactosphaera pasteurii as Trichococcus pasteurii comb. nov. and of Ruminococcus palustris as Trichococcus palustris comb. nov. in the low-G+C Gram-positive bacteria. Int J Syst Evol Microbiol 52, 1113–1126.[CrossRef] [Google Scholar]
  18. Lücke, F.-K.(1996). Lactic acid bacteria involved in food fermentations and their present and future uses in food industry. In Lactic Acid Bacteria: Current Advances in Metabolism, Genetics and Applications (NATO ASI Series H:Cell Biology, no. 98), pp. 81–99. Edited by T. F. Bozoğlu & B. Ray. Berlin: Springer.
  19. McKay, L. L. & Baldwin, K. A.(1990). Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 7, 3–14. [Google Scholar]
  20. Nakajima, K., Hirota, K., Nodasaka, Y. & Yumoto, I.(2005).Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 55, 1525–1530.[CrossRef] [Google Scholar]
  21. Nozawa, Y., Sakai, N., Arai, K., Kawasaki, Y. & Harada, K.(2007). Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey's method. J Microbiol Methods 70, 306–311.[CrossRef] [Google Scholar]
  22. Ntougias, S. & Russell, N. J.(2001).Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash waters. Int J Syst Evol Microbiol 51, 1161–1170.[CrossRef] [Google Scholar]
  23. Pikuta, E. V., Hoover, R. B., Bej, A. K., Marsic, D., Whitman, W. B., Krader, P. E. & Tang, J.(2006).Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at −5 °C, isolated from penguin guano in Chilean Patagonia. Int J Syst Evol Microbiol 56, 2055–2062.[CrossRef] [Google Scholar]
  24. Powers, E. M.(1995). Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758. [Google Scholar]
  25. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  26. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE, MIDI Inc.
  27. Scheff, G., Salcher, O. & Lingens, F.(1984).Trichococcus flocculiformis gen. nov., sp. nov. A new Gram-positive filamentous bacterium isolated from bulking sludge. Appl Microbiol Biotechnol 19, 114–119.[CrossRef] [Google Scholar]
  28. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  29. Schleifer, K. H. & Ludwig, W.(1996). Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18, 461–467. [Google Scholar]
  30. Stackebrandt, E., Schumann, P., Swiderski, J. & Weiss, N.(1999). Reclassification of Brevibacterium incertum (Breed 1953) as Desemzia incerta gen. nov., comb. nov. Int J Syst Bacteriol 49, 185–188.[CrossRef] [Google Scholar]
  31. Stiles, M. E. & Holzapfel, W. H.(1997). Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36, 1–29.[CrossRef] [Google Scholar]
  32. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  33. Tamura, T., Nishii, Y., Hasegawa, T., Stackebrandt, E. & Yokota, A.(1994). A new genus of the order Actinomycetales, Couchinoplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchinoplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 44, 193–203.[CrossRef] [Google Scholar]
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  35. Toffin, L., Zink, K., Kato, C., Pignet, P., Bidault, A., Bienvenu, N., Birrien, J.-L. & Prieur, D.(2005).Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int J Syst Evol Microbiol 55, 345–351.[CrossRef] [Google Scholar]
  36. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J.(1996). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438. [Google Scholar]
  37. Vaughan, E. E., de Vries, M. C., Zoetendal, E. G., Ben-Amor, K., Akkermans, A. D. L. & de Vos, W. M.(2002). The intestinal LABs. Antonie van Leeuwenhoek 82, 341–352.[CrossRef] [Google Scholar]
  38. Vaughan, E. E., Heilig, H. G. H. J., Ben-Amor, K. & de Vos, W. M.(2005). Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 29, 477–490.[CrossRef] [Google Scholar]
  39. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  40. Yumoto, I., Hirota, K., Nodasaka, Y., Yokota, Y., Hoshino, T. & Nakajima, K.(2004).Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphle that reduces an indigo dye. Int J Syst Evol Microbiol 54, 2379–2383.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003293-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003293-0
Loading

Data & Media loading...

Supplements

(a) Phase-contrast and (b) transmission electron micrographs of cells of strain MIC1-18 . Bars, 5.0 µm (a); 0.5 µm (b).

IMAGE



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error