1887

Abstract

Two strains of non-spore-forming, rod-shaped, Gram-positive bacteria, CIP 101303 and CIP 102116, were isolated from human blood in 1976 and 1977, respectively. These strains had chemotaxonomic markers that were consistent with classification in the genus , i.e. MK-10, MK-11 and MK-12 as the major menaquinones, predominant iso- and anteiso-branched cellular fatty acids, galactose, mannose and rhamnose as the cell-wall sugars and ornithine as the diamino acid in the cell-wall peptidoglycan. The DNA G+C content was 70–72 mol%. Comparative 16S rRNA gene sequence studies revealed that strains CIP 101303 and CIP 102116 belonged to the genus and that they were related closely to . The level of DNA–DNA relatedness showed that the two isolates represented a separate genomic species. Based on phenotypic and genotypic results, it is proposed that strains CIP 101303 and CIP 102116 be assigned to a novel species, sp. nov. The type strain is CIP 101303 (=DSM 19164).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003160-0
2009-05-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1016.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003160-0&mimeType=html&fmt=ahah

References

  1. Behrendt, U., Ulrich, A. & Schumann, P. ( 2001; ). Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51, 1267–1276.
    [Google Scholar]
  2. Böttger, E. C. ( 1989; ). Rapid determination of bacterial ribosomal RNA sequences by direct sequencing of enzymatically amplified DNA. FEMS Microbiol Lett 53, 171–176.
    [Google Scholar]
  3. Castresana, J. ( 2000; ). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.[CrossRef]
    [Google Scholar]
  4. Collins, M. D., Jones, D. & Kroppenstedt, R. M. ( 1983; ). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 4, 65–78.[CrossRef]
    [Google Scholar]
  5. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  6. Dieckmann, R., Graeber, I., Kaesler, I., Szewzyk, U. & von Döhren, H. ( 2005; ). Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by Intact-Cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67, 539–548.[CrossRef]
    [Google Scholar]
  7. Fagerquist, C. K., Miller, W. G., Harden, L. A., Bates, A. H., Vensel, W. H., Wang, G. & Mandrell, R. E. ( 2005; ). Genomic and proteomic identification of a DNA-binding protein used in the “fingerprinting” of Campylobacter species and strains by MALDI-TOF-MS protein biomarker analysis. Anal Chem 77, 4897–4907.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  9. Fenselau, C. & Demirev, P. A. ( 2001; ). Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20, 157–171.[CrossRef]
    [Google Scholar]
  10. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  11. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  12. Imai, K., Takeuchi, M. & Banno, I. ( 1984; ). Reclassification of “Flavobacterium arborescens” (Frankland and Frankland) Bergey et al. in the genus Microbacterium (Orla-Jensen) Collins et al., as Microbacterium arborescens comb. nov., nom. rev. Curr Microbiol 11, 281–284.[CrossRef]
    [Google Scholar]
  13. Jarman, K. H. & Wahl, K. L. ( 2006; ). Development of spectral pattern-matching approaches to matrix assisted laser desorption/ionization time-of-flight mass spectrometry for bacterial identification. In Identification of Microorganisms by Mass Spectrometry, pp. 153–160. Edited by C. L. Wilkins & J. O. Lay. Hoboken, NJ: Wiley.
  14. Kim, K. K., Park, H. Y., Park, W., Kim, I. S. & Lee, S. T. ( 2005; ). Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 55, 2075–2079.[CrossRef]
    [Google Scholar]
  15. Ko, K. S., Oh, W. S., Lee, M. Y., Peck, K. R., Lee, N. Y. & Song, J.-H. ( 2007; ). A new Microbacterium species isolated from the blood of a patient with fever: Microbacterium pyrexiae sp. nov. Diagn Microbiol Infect Dis 57, 393–397.[CrossRef]
    [Google Scholar]
  16. Li, W.-J., Chen, H.-H., Kim, C.-J., Park, D.-J., Tang, S.-K., Lee, J.-C., Xu, L.-H. & Jiang, C.-L. ( 2005; ). Microbacterium halotolerans sp. nov., isolated from a saline soil in the west of China. Int J Syst Evol Microbiol 55, 67–70.[CrossRef]
    [Google Scholar]
  17. Matsuyama, H., Kawasaki, K., Yumoto, I. & Shida, O. ( 1999; ). Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int J Syst Evol Microbiol 49, 1353–1357.
    [Google Scholar]
  18. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  19. MIDI ( 1999; ). Sherlock Microbial Identification System, operating manual, version 3.0. Newark, DE: MIDI, Inc.
  20. Orla-Jensen, S. ( 1919; ). The Lactic Acid Bacteria. Copenhagen: Host & Sons.
  21. Perrière, G. & Gouy, M. ( 1996; ). WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.[CrossRef]
    [Google Scholar]
  22. Renaud, F., Borrel, T. & Marmonier, A. ( 2007; ). Identification conventionnelle. In Précis de Bactériologie Clinique, 2nd edn, pp. 67–108. Edited by J. Freney, F. Renaud, R. Leclercq & P. Riegel. Paris: Editions ESKA (in French).
  23. Richert, K., Brambilla, E. & Stackebrandt, E. ( 2007; ). The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16S rRNA genes. Syst Appl Microbiol 30, 102–108.[CrossRef]
    [Google Scholar]
  24. Ryzhov, V. & Fenselau, C. ( 2001; ). Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73, 746–750.[CrossRef]
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  27. Schleifer, K. H. ( 1985; ). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156.
    [Google Scholar]
  28. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  29. Schumann, P., Rainey, F. A., Burghardt, J., Stackebrandt, E. & Weiss, N. ( 1999; ). Reclassification of Brevibacterium oxydans (Chatelain and Second 1966) as Microbacterium oxydans comb. nov. Int J Syst Bacteriol 49, 175–177.[CrossRef]
    [Google Scholar]
  30. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  31. Stackebrandt, E., Päuker, O. & Erhard, M. ( 2005; ). Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry: comparison with gene sequence phylogenies. Curr Microbiol 50, 71–77.[CrossRef]
    [Google Scholar]
  32. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  33. Takeuchi, M. & Hatano, K. ( 1998a; ). Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48, 973–982.[CrossRef]
    [Google Scholar]
  34. Takeuchi, M. & Hatano, K. ( 1998b; ). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48, 739–747.[CrossRef]
    [Google Scholar]
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  36. Valentine, N., Wunschel, S., Wunschel, D., Petersen, C. & Wahl, K. ( 2005; ). Effect of culture conditions on microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 71, 58–64.[CrossRef]
    [Google Scholar]
  37. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  38. Whiton, R. S., Lau, P., Morgan, S. L., Gilbart, J. & Fox, A. ( 1985; ). Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography – mass spectrometry with selected ion monitoring. J Chromatogr 347, 109–120.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003160-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003160-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error