1887

Abstract

Two previously isolated strains (DSM 9103 and LPM-4) able to grow with EDTA (facultatively and obligately, respectively) as the source of carbon, nitrogen and energy were investigated in order to clarify their taxonomic positions. The strains were strictly aerobic, Gram-negative, asporogenous and non-motile rods that required biotin for growth. Reproduction occurred by binary fission. The strains were mesophilic and neutrophilic. Their major fatty acids were summed feature 7 (consisting of C 7, C 9 and/or C 12) and C cyclo 8. The polyamine pattern revealed homospermidine as a major polyamine. Predominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine and diphosphatidylglycerol. -specific ornithine lipid was absent. The predominant isoprenoid quinone was Q-10. The DNA G+C values were 60.8 and 63.1 mol% ( ) for strains LPM-4 and DSM 9103, respectively. The level of 16S rRNA gene sequence similarity between these EDTA-utilizers was 99.3 % while the DNA–DNA hybridization value was only 37 %. Both strains were phylogenetically related to members of the genera and (95–97 % sequence similarity). However, DNA–DNA hybridization values between the novel EDTA-degrading strains and DSM 7048 and DSM 2626 were low (10–11 %). Based on their genomic and phenotypic properties, the new alphaproteobacterial strains are assigned to a novel genus, gen. nov., with the names sp. nov. (type strain DSM 9103=VKM B-2394) and sp. nov. (type strain LPM-4=VKM B-2395=DSM 19276).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003152-0
2010-05-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/5/1044.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003152-0&mimeType=html&fmt=ahah

References

  1. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef]
    [Google Scholar]
  2. Andreev, L. V. & Galchenko, V. F. ( 1983; ). Phospholipid composition and differentiation of methanotrophic bacteria. J Liq Chromatogr 6, 2699–2707.[CrossRef]
    [Google Scholar]
  3. Bambauer, A., Rainey, F. A., Stackebrandt, E. & Winter, J. ( 1998; ). Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol 169, 293–302.[CrossRef]
    [Google Scholar]
  4. Bohuslavek, J., Payne, J. W., Liu, Y., Bolton, H. & Xun, L. ( 2001; ). Cloning, sequencing, and characterization of a gene cluster involved in EDTA degradation from the bacterium BNC1. Appl Environ Microbiol 67, 688–695.[CrossRef]
    [Google Scholar]
  5. Bucheli-Witschel, M. & Egli, T. ( 2001; ). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25, 69–106.[CrossRef]
    [Google Scholar]
  6. Chistyakova, T. I., Dedyukhina, E. G., Satroutdinov, A. D., Kaparullina, E. N., Gavrish, E. Yu. & Eroshin, V. K. ( 2005; ). EDTA-dependent bacterial strain. Process Biochem 40, 601–605.[CrossRef]
    [Google Scholar]
  7. Choma, A. & Komaniecka, I. ( 2002; ). Analysis of phospholipids and ornithine–containing lipids from Mesorhizobium spp. Syst Appl Microbiol 25, 326–331.[CrossRef]
    [Google Scholar]
  8. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  9. Doronina, N. V., Trotsenko, Y. A. & Tourova, T. P. ( 2000; ). Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50, 1849–1850.
    [Google Scholar]
  10. Doronina, N. V., Darmaeva, T. D. & Trotsenko, Y. A. ( 2003; ). Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. Int J Syst Evol Microbiol 53, 223–229.[CrossRef]
    [Google Scholar]
  11. Doronina, N. V., Kaparullina, E. N., Vainshtein, M. B. & Trotsenko, Y. A. ( 2006; ). Metabolic peculiarities of an obligate degrader of ethylenediaminetetraacetate. Microbiology (English translation of Mikrobiologiia) 75, 358–361.
    [Google Scholar]
  12. Egli, T., Weilenmann, H. U., El-Banna, T. & Auling, G. ( 1988; ). Gram-negative, aerobic, nitrilo-triacetate-utilizing bacteria from wastewater and soil. Syst Appl Microbiol 10, 297–305.[CrossRef]
    [Google Scholar]
  13. Fedorov, D. N., Ivanova, E. G., Doronina, N. V. & Trotsenko, Yu. A. ( 2008; ). A new system of degenerate oligonucleotide primers for detection and amplification of nifHD genes. Microbiology (English translation of Mikrobiologiia) 77, 247–249.
    [Google Scholar]
  14. Fritsche, K., Auling, G., Andreesen, J. R. & Lechner, U. ( 1999; ). Defluvibacter lusatiae gen. nov., sp. nov., a new chlorophenol-degrading member of the alpha-2 subgroup of Proteobacteria. Syst Appl Microbiol 22, 197–204.[CrossRef]
    [Google Scholar]
  15. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. ( 1994; ). Methods of General and Molecular Bacteriology. Washington, DC; American Society for Microbiology.
  16. Hamana, K., Minamisawa, K. & Matsuzaki, S. ( 1990; ). Polyamines in Rhizobium, Bradyrhizobium, Azorhizobium and Agrobacterium. FEMS Microbiol Lett 71, 71–76.[CrossRef]
    [Google Scholar]
  17. Jarvis, B. D. W., Pankhurst, C. E. & Patel, J. J. ( 1982; ). Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32, 378–380.[CrossRef]
    [Google Scholar]
  18. Jarvis, B. D. W., Van Berkum, P., Chen, W. X., Nour, S. M., Fernandez, M. P., Cleyet-Marel, J. C. & Gillis, M. ( 1997; ). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47, 895–898.[CrossRef]
    [Google Scholar]
  19. Jukes, T. N. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  20. Kämpfer, P., Müller, C., Mau, M., Neef, A., Auling, G., Busse, H.-J., Osborn, A. M. & Stolz, A. ( 1999; ). Description of Pseudaminobacter gen. nov. with two species, Pseudaminobacter salicylatoxidans sp. nov and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49, 887–897.[CrossRef]
    [Google Scholar]
  21. Kämpfer, P., Neef, A., Salkinoja-Salonen, M. S. & Busse, H.-J. ( 2002; ). Chelatobacter heintzii is a later subjective synonym of Aminobacter aminovorans. Int J Syst Evol Microbiol 52, 835–839.[CrossRef]
    [Google Scholar]
  22. Korotkova, N. A., Ashin, V. V., Doronina, N. V. & Trotsenko, Yu. A. ( 1997; ). A new method for quantitative determination of poly-3-hydroxybutyrate and 3-hydroxybutyrate-3-hydroxyvalerate copolymer in microbial biomass by reversed-phase high-performance liquid chromatography. Appl Biochem Microbiol 33, 339–343. (English translation of Prikl Biokhim Microbiol)
    [Google Scholar]
  23. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics, pp.115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: John Wiley and Sons.
  24. Lauff, J. J., Steele, D. B., Coogan, L. A. & Breitfeller, J. M. ( 1990; ). Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl Environ Microbiol 56, 3346–3353.
    [Google Scholar]
  25. Marmur, J. A. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–214.[CrossRef]
    [Google Scholar]
  26. Nörtemann, B. ( 1992; ). Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl Environ Microbiol 58, 671–676.
    [Google Scholar]
  27. Nörtemann, B. ( 1999; ). Biodegradation of EDTA. Appl Microbiol Biotechnol 51, 751–759.[CrossRef]
    [Google Scholar]
  28. Nörtemann, B., Cordes, C., Lang, E. & Busse, H.-J. ( 2004; ). Classification of EDTA-degrading bacteria. In Annual Meeting of the German Society of Microbiology VAAM, Poster no. PA011, Biospektrum, special edition, 74.
  29. Nörtemann, B. ( 2005; ). Biodegradation of chelating agents: EDTA, DTPA, PDTA, NTA, and EDDS. In Biogeochemistry of Chelating Agents (ACS Symposium Series vol. 910), pp. 150–170. Edited by B. Nowak & J. M. VanBriesen.
  30. Owen, R. J. & Lapage, S. P. ( 1976; ). The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41, 335–340.[CrossRef]
    [Google Scholar]
  31. Palumbo, A. V., Lee, S. Y. & Boerman, P. ( 1994; ). The effect of media composition on EDTA degradation by Agrobacterium sp. Appl Biochem Biotechnol 45–46, 811–822.
    [Google Scholar]
  32. Pfennig, N., Widdel, F. & Trüper, H. G. ( 1981; ). The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, vol. 1, 926–940 Edited by M. P. Starr, H. Stolp, H. G. Trüper, H. Balows & H. G. Schlegel. Berlin: Springer Verlag.
  33. Potthoff-Karl, B., Greindl, T. & Oftring, A. ( 1996; ). Synthese abbaubarer Komplexbildner und ihre Reinigungsformulierungen. SOEFW J 122, 392–397 (in German).
    [Google Scholar]
  34. Sillanpaa, M. ( 1997; ). Environmental fate of EDTA and DTPA. Rev Environ Contam Toxicol 152, 85–111.
    [Google Scholar]
  35. Skidmore, W. D. & Entenman, C. ( 1962; ). Two dimensional thin-layer chromatography of rat liver phosphatides. J Lipid Res 3, 471–475.
    [Google Scholar]
  36. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  37. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 8, 1596–1599.
    [Google Scholar]
  38. Tighe, S. W., de Lajudie, P., Dipietro, K., Lindstroem, K., Nick, G. & Jarvis, B. D. W. ( 2000; ). Analysis of cellular fatty acid and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock microbial identification system. Int J Syst Evol Microbiol 50, 787–801.[CrossRef]
    [Google Scholar]
  39. Tindall, B. J. ( 1990; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  40. Tkachenko, A. G., Shumkov, M. S. & Akhova, A. V. ( 2006; ). Putrescine as a modulator of the level of RNA polymerase σ S subunit in Escherichia coli under acid stress. Biochemistry 71, 185–193. (Moscow)
    [Google Scholar]
  41. Urakami, T., Araki, H., Oyanagi, H., Suzuki, K.-I. & Komagata, K. ( 1992; ). Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42, 84–92.[CrossRef]
    [Google Scholar]
  42. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  43. Weilenmann, H.-U., Engeli, B., Bucheli-Witschel, M. & Egli, T. ( 2004; ). Isolation and growth characteristics of an EDTA-degrading member of the α-subclass of Proteobacteria. Biodegradation 15, 289–301.[CrossRef]
    [Google Scholar]
  44. Witschel, M., Nagel, S. & Egli, T. ( 1997; ). Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103. J Bacteriol 179, 6937–6943.
    [Google Scholar]
  45. Young, J. M., Kuykendall, L. D., Martinez-Romero, E., Kerr, A. & Sawada, H. ( 2001; ). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51, 89–103.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003152-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003152-0
Loading

Data & Media loading...

Supplements

Polar lipids of strains DSM 9103 and LPM-4 after separation by two-dimensional TLC and detection with 10% CuSO in 8% H PO . PC, phosphatidylcholine; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; DPG, diphosphatidylglycerol; PDE, phosphatidyldimethylethanolamine; PME, phosphatidylmonomethylethanolamine; PL, unidentified phospholipids, APL, unidentified aminophospholipid.

IMAGE

Four additional phylogenetic trees. [ Combined PDF] 536 KB

PDF

Major fatty acid contents (%) of the novel EDTA-degrading bacteria and the type species of the genera and . [ PDF] 67 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error