A Gram-negative, arsenate-respiring and arsenite-oxidizing marine bacterium, NKSG1, was isolated from hydrothermal sediment at Santorini, Greece. Strain NKSG1 was a facultatively anaerobic, motile, non-spore-forming, rod-shaped bacterium. Growth occurred optimally at 35–40 °C, between pH 5.5 and 9.0 and with 0.5–16 % NaCl. Energy was conserved by the aerobic oxidation of a range of complex substrates, carbohydrates and organic acids, or anaerobically by arsenate reduction, nitrate reduction coupled to the oxidation of organic carbon or lactate fermentation. Oxidation of arsenite and anaerobic nitrate-dependent oxidation of Fe(II) were facilitated by the presence of an organic carbon source. The DNA G+C content was 58.1 mol%. The major respiratory quinone was Q-9. The significant fatty acids were 16 : 19, summed feature 3 (iso-15 : 0 2-OH/16 : 17), 16 : 0 and 18 : 19. Analysis of 16S rRNA gene sequences showed that strain NKSG1 fits within the phylogenetic cluster of the genus and is most closely related to DD-M3 (99.3 % similarity). The degree of relatedness with DSM 17924 based on DNA–DNA hybridization was 56 %. The results of a polyphasic study indicated that strain NKSG1 is a representative of a novel species within the genus , for which the name sp. nov. is proposed. The type strain is NKSG1 (=DSM 21262 =NCIMB 14441=ATCC BAA-1649). The capacity for arsenic reduction or oxidation has not been demonstrated previously for this genus.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Anderson, R. T. & Lovley, D. R.(1999). Napthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremediat J 3, 121–135.[CrossRef] [Google Scholar]
  3. Antunes, A., Franca, L., Rainey, F. A., Huber, R., Nobre, M. F., Edwards, K. J. & da Costa, M. S.(2007).Marinobacter salsuginis sp. nov., isolated from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57, 1035–1040.[CrossRef] [Google Scholar]
  4. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  5. Blumentals, I. I., Itoh, M., Olson, G. & Kelly, R.(1990). Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56, 1255–1262. [Google Scholar]
  6. Bostrom, K. & Widenfalk, L.(1984). The origin of iron-rich muds at the Kameni islands, Santorini, Greece. Chem Geol 42, 203–218.[CrossRef] [Google Scholar]
  7. Caccavo, F., Jr, Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F. & McInerney, M. J.(1994).Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60, 3752–3759. [Google Scholar]
  8. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  9. Cline, J. D.(1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef] [Google Scholar]
  10. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  11. Fredrickson, J. K., Kostandarithes, H. M., Li, S. W., Plymale, A. E. & Daly, M. J.(2000). Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66, 2006–2011.[CrossRef] [Google Scholar]
  12. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P. & Bertrand, J. C.(1992).Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42, 568–576.[CrossRef] [Google Scholar]
  13. Gorshkova, N. M., Ivanova, E. P., Sergeev, A. F., Zhukova, N. V., Alexeeva, Y., Wright, J. P., Nicolau, D. V., Mikhailov, V. V. & Christen, R.(2003).Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53, 2073–2078.[CrossRef] [Google Scholar]
  14. Green, D. H., Bowman, J. P., Smith, E. A., Gutierrez, T. & Bolch, C. J. S.(2006).Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56, 523–527.[CrossRef] [Google Scholar]
  15. Gu, J., Cai, H., Yu, S.-L., Qu, R., Yin, B., Guo, Y.-F., Zhao, J.-Y. & Wu, X.-L.(2007).Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57, 250–254.[CrossRef] [Google Scholar]
  16. Guo, B., Gu, J., Ye, Y.-G., Tang, Y.-Q., Kida, K. & Wu, X.-L.(2007).Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57, 1970–1974.[CrossRef] [Google Scholar]
  17. Handley, K. M., Héry, M. & Lloyd, J. R.(2009). Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Environ Microbiol (in press), doi:10.1111/j.1462-2920.2009.01890.x [Google Scholar]
  18. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  19. Huu, N. B., Denner, E. B. M., Ha, D. T. C., Wanner, G. & Stan-Lotter, H.(1999).Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49, 367–375.[CrossRef] [Google Scholar]
  20. Johnson, D. L.(1971). Simultaneous determination of arsenate and phosphate in natural waters. Environ Sci Technol 5, 411–414.[CrossRef] [Google Scholar]
  21. Johnson, D. L. & Pilson, M. E. Q.(1972). Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters. Anal Chim Acta 58, 289–299.[CrossRef] [Google Scholar]
  22. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  23. Kim, B.-Y., Weon, H.-Y., Yoo, S.-H., Kim, J.-S., Kwon, S.-W., Stackebrandt, E. & Go, S.-J.(2006).Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56, 2653–2656.[CrossRef] [Google Scholar]
  24. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  25. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  26. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–148. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  27. Liebgott, P.-P., Casalot, L., Paillard, S., Lorquin, J. & Labat, M.(2006).Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. Int J Syst Evol Microbiol 56, 2511–2516.[CrossRef] [Google Scholar]
  28. Lovley, D. R. & Phillips, E. J. P.(1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689. [Google Scholar]
  29. Lovley, D. R. & Phillips, E. J. P.(1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53, 1536–1540. [Google Scholar]
  30. Lovley, D. R., Greening, R. C. & Ferry, J. G.(1984). Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48, 81–87. [Google Scholar]
  31. Marquez, M. C. & Ventosa, A.(2005).Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55, 1349–1351.[CrossRef] [Google Scholar]
  32. Martin, S., Marquez, M. C., Sanchez-Porro, C., Mellado, E., Arahal, D. R. & Ventosa, A.(2003).Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53, 1383–1387.[CrossRef] [Google Scholar]
  33. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  34. Murphy, J. & Riley, J. P.(1962). A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27, 31–36.[CrossRef] [Google Scholar]
  35. Romanenko, L. A., Schumann, P., Rohde, M., Zhukova, N. V., Mikhailov, V. V. & Stackebrandt, E.(2005).Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55, 143–148.[CrossRef] [Google Scholar]
  36. Shieh, W. Y., Jean, W. D., Lin, Y.-T. & Tseng, M.(2003).Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49, 244–252.[CrossRef] [Google Scholar]
  37. Shivaji, S., Gupta, P., Chaturvedi, P., Suresh, K. & Delille, D.(2005).Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55, 1453–1456.[CrossRef] [Google Scholar]
  38. Spröer, C., Lang, E., Hobeck, P., Burghardt, J., Stackebrandt, E. & Tindall, B. J.(1998). Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus. Int J Syst Bacteriol 48, 1445–1448.[CrossRef] [Google Scholar]
  39. Stackebrandt, E. & Ebers, J.(2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155. [Google Scholar]
  40. Strickland, J. D. H. & Parsons, T. R.(1968).A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada.
  41. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  42. Tebo, B. M., Clement, B. G. & Dick, G. J.(2007). Biotransformations of manganese. In Manual of Environmental Microbiology, pp. 1223–1238. Edited by C. J. Hurst, R. L. Crawford, J. L. Garland, D. A. Lipson, A. L. Mills & L. D. Stetzenbach. Washington, DC: American Society for Microbiology.
  43. Tindall, B. J.(1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  44. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  45. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  46. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M.(2008).Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef] [Google Scholar]
  47. Yoon, J.-H., Shin, D.-Y., Kim, I.-G., Kang, K. H. & Park, Y.-H.(2003).Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53, 563–568.[CrossRef] [Google Scholar]
  48. Yoon, J.-H., Yeo, S.-H., Kim, I.-G. & Oh, T.-K.(2004).Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1799–1803.[CrossRef] [Google Scholar]
  49. Yoon, J.-H., Lee, M.-H., Kang, S.-J. & Oh, T.-K.(2007).Marinobacter salicampi sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 57, 2102–2105.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 886 - 892

Electron donors that facilitate nitrate reduction by strain NKSG1 and type strains of phylogenetically related species. [PDF](26 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error