1887

Abstract

A Gram-negative, rod-shaped, strictly aerobic bacterium, designated strain CL-SK30, was isolated from a culture of the marine ciliate . 16S rRNA gene sequence analysis revealed that strain CL-SK30 was most closely related to (92.0 % similarity) and next to the type strains of species of the genus (89.8–91.3 % similarities) in the family . Phylogenetic analyses of the 16S rRNA gene sequences showed that strain CL-SK30 formed a robust clade together with , but the sequence divergence value of 8 % between them indicated that the novel bacterium represented a distinct lineage. Strain CL-SK30 grew optimally in the presence of 2–5 % sea salts at 30–35 °C and pH 7.2–8.0. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, two unidentified glycolipids, an unidentified phospholipid and an unidentified lipid. Ubiquinone 10 was the major quinone. The DNA G+C content was 52.7 mol%. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain CL-SK30 represents a novel genus and species of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is CL-SK30 (=KCCM 90060=DSM 19524).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.002881-0
2009-03-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/609.html?itemId=/content/journal/ijsem/10.1099/ijs.0.002881-0&mimeType=html&fmt=ahah

References

  1. Allgaier, M., Uphoff, H., Felske, A. & Wagner-Döbler, I. ( 2003; ). Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69, 5051–5059.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45, 493–496.
    [Google Scholar]
  4. Baumann, P. & Baumann, L. ( 1981; ). The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In The Prokaryotes, pp. 1302–1330. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  5. Biebl, H., Allgaier, M., Tindall, B. J., Koblizek, M., Lünsdorf, H., Pukall, R. & Wagner-Döbler, I. ( 2005; ). Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55, 1089–1096.[CrossRef]
    [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & other authors ( 2007; ). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef]
    [Google Scholar]
  7. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  8. Englen, M. D. & Kelley, L. C. ( 2000; ). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  10. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  11. Garrity, G. M., Bell, J. A. & Lilburn, T. ( 2005; ). Family VIII. Hyphomicrobiaceae Babudieri 1950, 589. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, pp. 476–566. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  12. Goodfellow, M., Manfio, G. P. & Chun, J. ( 1997; ). Towards a practical species concept for cultivable bacteria. In Species: the Units of Biodiversity, pp. 25–59. Edited by M. F. Claridge, H. A. Dawah & M. R. Wilson. London: Chapman Hall.
  13. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  14. Hwang, C. Y. & Cho, B. C. ( 2008; ). Cucumibacter marinus gen. nov., sp. nov., a novel marine bacterium in the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 58, 1591–1597.[CrossRef]
    [Google Scholar]
  15. Jeon, Y.-S., Chung, H., Park, S., Hur, I., Lee, J.-H. & Chun, J. ( 2005; ). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef]
    [Google Scholar]
  16. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  17. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  18. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  19. Lee, S. D. ( 2007; ). Devosia subaequoris sp. nov., isolated from beach sediment. Int J Syst Evol Microbiol 57, 2212–2215.[CrossRef]
    [Google Scholar]
  20. Lemos, M. L., Toranzo, A. E. & Barja, J. L. ( 1985; ). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541–1543.
    [Google Scholar]
  21. Lyman, J. & Fleming, R. H. ( 1940; ). Composition of sea water. J Mar Res 3, 134–146.
    [Google Scholar]
  22. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  23. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T. ( 2006; ). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56, 1293–1304.[CrossRef]
    [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  25. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  26. Nakagawa, Y., Sakane, T. & Yokota, A. ( 1996; ). Transfer of “Pseudomonas riboflavina” (Foster 1944), a Gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46, 16–22.[CrossRef]
    [Google Scholar]
  27. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  28. Posada, D. & Crandall, K. A. ( 1998; ). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  29. Rivas, R., Willems, A., Subba-Rao, N. S., Mateos, P. F., Dazzo, F. B., Kroppenstedt, R. M., Martínez-Molina, E., Gillis, M. & Velázquez, E. ( 2003; ). Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26, 47–53.[CrossRef]
    [Google Scholar]
  30. Ryu, S. H., Chung, B. S., Le, N. T., Jang, H. H., Yun, P.-Y., Park, W. & Jeon, C. O. ( 2008; ). Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int J Syst Evol Microbiol 58, 633–636.[CrossRef]
    [Google Scholar]
  31. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  32. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  33. Stackebrandt, E. & Liesack, W. ( 1993; ). Nucleic acids and classification. In Handbook of New Bacterial Systematics, pp. 151–194. Edited by M. Goodfellow & A. G. O'Donnell. London: Academic Press.
  34. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
  35. Swofford, D. L. ( 1998; ). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  36. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  37. Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. ( 2004; ). Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat Microb Ecol 36, 165–170.[CrossRef]
    [Google Scholar]
  38. Yoo, S.-H., Weon, H.-Y., Kim, B.-Y., Hong, S.-B., Kwon, S.-W., Cho, Y.-H., Go, S.-J. & Stackebrandt, E. ( 2006; ). Devosia soli sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56, 2689–2692.[CrossRef]
    [Google Scholar]
  39. Yoon, J.-H., Lee, M.-H. & Oh, T.-K. ( 2004; ). Porphyrobacter donghaensis sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 54, 2231–2235.[CrossRef]
    [Google Scholar]
  40. Yoon, J.-H., Kang, S.-J., Park, S. & Oh, T.-K. ( 2007; ). Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia. Int J Syst Evol Microbiol 57, 1310–1314.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.002881-0
Loading
/content/journal/ijsem/10.1099/ijs.0.002881-0
Loading

Data & Media loading...

Supplements

Transmission electron micrograph of a negatively stained cell of strain CL-SK30 ( gen. nov., sp. nov.). [PDF](257 KB)

PDF

Two-dimensional thin-layer chromatograms of polar lipids of strain CL-SK30 ( gen. nov., sp. nov.) and CL-GR60 . [PDF](170 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error