1887

Abstract

Strain D24TN was enriched and isolated from sediment collected from a tar oil-contaminated aquifer at a former gasworks site located in Duesseldorf-Flingern, Germany. Cells of strain D24TN were rod-shaped, non-spore-forming and stained Gram-negative. Thiosulfate was used as an electron donor. The organism was obligately chemolithoautotrophic and facultatively anaerobic, and grew with either oxygen or nitrate as electron acceptor. Growth was observed at pH values between 6.3 and 8.7 and at temperatures of −2 to 30 °C; optimum growth occurred at pH 7.5–8.3 and 25–30 °C. The DNA G+C content was 61.5 mol%. On the basis of the 16S rRNA gene sequence analysis, strain D24TN clustered in the and was most closely related to (97.6 %) and (97.5 %). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain D24TN represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is D24TN (=DSM 19892=JCM 15047).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.002808-0
2009-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/583.html?itemId=/content/journal/ijsem/10.1099/ijs.0.002808-0&mimeType=html&fmt=ahah

References

  1. Alfreider, A., Vogt, C., Hoffmann, D. & Babel, W. ( 2003; ). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microb Ecol 45, 317–328.
    [Google Scholar]
  2. Anneser, B., Einsiedl, F., Meckenstock, R. U., Richters, L., Wisotzky, F. & Griebler, C. ( 2008; ). High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23, 1715–1730.[CrossRef]
    [Google Scholar]
  3. Beller, H. R., Chain, P. S. G., Letain, T. E., Chakicherla, A., Larimer, F. W., Richardson, P. M., Coleman, M. A., Wood, A. P. & Kelly, D. P. ( 2006; ). The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188, 1473–1488.[CrossRef]
    [Google Scholar]
  4. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  5. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  6. Gabor, E., de Vries, E. & Janssen, D. ( 2003; ). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44, 153–163.[CrossRef]
    [Google Scholar]
  7. Hügler, M., Huber, H., Stetter, K. O. & Fuchs, G. ( 2003; ). Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179, 160–173.
    [Google Scholar]
  8. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  9. Kelly, D. P. & Wood, A. P. ( 2000; ). Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 50, 547–550.[CrossRef]
    [Google Scholar]
  10. Kinkle, B. K. & Kane, T. C. ( 2000; ). Chemolithoautotrophic micro-organisms and their potential role in subsurface environments. In Ecosystems of the World, pp. 309–318. Edited by H. Wilkens, D. C. Culven & W. F. Humphreys. Amsterdam: Elsevier.
  11. Labrenz, M., Jost, G., Pohl, C., Beckmann, S., Martens-Habbena, W. & Jurgens, K. ( 2005; ). Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines. Appl Environ Microbiol 71, 6664–6672.[CrossRef]
    [Google Scholar]
  12. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  13. Lueders, T., Manefield, M. & Friedrich, M. W. ( 2004; ). Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6, 73–78.
    [Google Scholar]
  14. Madsen, E. & Ghiorse, W. C. ( 1993; ). Groundwater microbiology: subsurface ecosystem processes. In Aquatic Microbiology: an Ecological Approach, pp. 167–213. Edited by T. E. Ford. Boston: Blackwell Scientific Publications.
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Olsen, G. J., Matsuda, H., Hagstrom, R. & Overbeek, R. ( 1994; ). fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10, 41–48.
    [Google Scholar]
  17. Robertson, L. A. & Kuenen, J. G. ( 2006; ). The Genus Thiobacillus. In The Prokaryotes, pp. 812–827. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. Berlin: Springer.
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Schmitt, M. E., Brown, T. & Trumpower, B. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisia. Nucleic Acids Res 18, 3091–3092.[CrossRef]
    [Google Scholar]
  20. Selesi, D., Schmid, M. & Hartmann, A. ( 2005; ). Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71, 175–184.[CrossRef]
    [Google Scholar]
  21. Vlasceanu, L., Popa, R. & Kinkle, B. K. ( 1997; ). Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl Environ Microbiol 63, 3123–3127.
    [Google Scholar]
  22. Wayne, L., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  23. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  24. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.002808-0
Loading
/content/journal/ijsem/10.1099/ijs.0.002808-0
Loading

Data & Media loading...

Supplements

Growth curves of cells of strain D24TN ( sp. nov.) under aerobic and anaerobic conditions. [PDF](56 KB)

PDF

Consenus tree based on genes. [PDF](122 KB)

PDF

Consenus tree based on genes. [PDF](122 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error