1887

Abstract

A Gram-reaction-negative, non-motile, aerobic bacterium, designated HJ50, was isolated from deep seawater of the East Sea, South Korea. Cells were ovoid to rod-shaped (0.5–0.8×1.3–3.0 μm), often with unequal ends, suggesting a budding mode of reproduction. The strain had an absolute requirement for sea salts and tolerated up to 20 % (w/v) sea salts. Propionate, -lactate, 2-ketogluconate, 3-hydroxybutyrate and rhamnose were used as growth substrates, but not mannitol, salicin, 4-hydroxybenzoate or acetate. The major fatty acid was summed feature 7 (C 7/9/12) and the DNA G+C content was 59.0±0.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that this strain was affiliated with the genus . Similarities between the 16S rRNA gene sequence of strain HJ50 (1430 nt) and those of type strains of members of the genus were 94.1–96.3 %. DNA–DNA relatedness values between strain HJ50 and the type strains of members of the genus were low (1.3–24.6 %). Physiological and biochemical differences support assignment of strain HJ50 to the genus as a representative of a novel species. The name sp. nov. is proposed, with HJ50 (=KCTC 22224 =LMG 24468) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.002576-0
2009-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2718.html?itemId=/content/journal/ijsem/10.1099/ijs.0.002576-0&mimeType=html&fmt=ahah

References

  1. Achenbach, L. A., Carey, J. & Madigan, M. T.(2001). Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67, 2922–2926.[CrossRef] [Google Scholar]
  2. Allgaier, M., Uphoff, H., Felske, A. & Wagner-Döbler, I.(2003). Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69, 5051–5059.[CrossRef] [Google Scholar]
  3. Biebl, H., Allgaier, M., Lunsdörf, H., Pukall, R., Tindall, B. J. & Wagner-Döbler, I.(2005).Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 55, 2377–2383.[CrossRef] [Google Scholar]
  4. Boettcher, K. J., Geaghan, K. K., Maloy, A. P. & Barber, B. J.(2005).Roseovarius crassostreae sp. nov., a member of the Roseobacter clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. Int J Syst Evol Microbiol 55, 1531–1537.[CrossRef] [Google Scholar]
  5. Buck, J. D.(1982). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993. [Google Scholar]
  6. Collins, M. D. & Jones, D.(1981). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45, 316–354. [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  8. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1985). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  10. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. González, J. M., Covert, J. S., Whitman, W. B., Henriksen, J. R., Mayer, F., Scharf, B., Schmitt, R., Buchan, A., Fuhrman, J. A. & other authors(2003).Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53, 1261–1269.[CrossRef] [Google Scholar]
  12. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  13. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  14. Kluge, A. G. & Farris, J. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  15. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  16. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Braker, G. & Hirsch, P.(1998).Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48, 1363–1372.[CrossRef] [Google Scholar]
  17. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Schumann, P. & Hirsch, P.(1999).Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49, 137–147.[CrossRef] [Google Scholar]
  18. Lafay, B., Ruimy, R., Rausch de Traubenberg, C., Breittmayer, V., Gauthier, M. J. & Christen, R.(1995).Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45, 290–296.[CrossRef] [Google Scholar]
  19. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T.(2006). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56, 1293–1304.[CrossRef] [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  21. Park, J. W., Oh, Y. S., Lim, J. Y. & Roh, D. H.(2006). Isolation and characterization of cold-adapted strains producing β-galactosidase. J Microbiol 44, 396–402. [Google Scholar]
  22. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  23. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  24. Shin, Y. K., Lee, J.-S., Chun, C. O., Kim, H.-J. & Park, Y.-H.(1996). Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 6, 68–69. [Google Scholar]
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  26. Tindall, B. J.(1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  27. Yoon, J.-H., Kang, S.-J. & Oh, T.-K.(2008).Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 58, 1198–1202.[CrossRef] [Google Scholar]
  28. Zeng, Y. & Jiao, N.(2007). Source environment feature related phylogenetic distribution pattern of anoxygenic photosynthetic bacteria as revealed by pufM analysis. J Microbiol 45, 205–212. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.002576-0
Loading
/content/journal/ijsem/10.1099/ijs.0.002576-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2718 - 2723

Two-dimensional TLC of polar lipids of strain HJ50 . Chloroform/methanol/water (65:25:4) was used in the first direction, followed by chloroform/acetic acid/methanol/water (80:15:12:4) in the second direction. Total polar lipids were stained with 5 % ethanolic molybdophosphoric acid. DPG, Diphosphatidylglycerol; L1–L5, unidentified lipids; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL1, unidentified phospholipid; PME, phosphatidylmonomethylethanolamine; PS, phosphatidylserine.



IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error