1887

Abstract

A novel, strictly anaerobic, non-spore-forming, Gram-negative coccobacillus (strain YIT 11859) was isolated from human faeces. Biochemically, this strain was largely unreactive and was asaccharolytic. Growth of strain YIT 11859 in peptone-yeast extract broth produced no visible turbidity, and a trace amount of propionate was detected as an end product of metabolism. 16S rRNA gene sequence analysis showed that strain YIT 11859 was related most closely to the type strains of species, with 90.8–88.0 % sequence similarity. Phylogenetic analysis of these and other related sequences confirmed that strain YIT 11859 was phylogenetically most closely associated with species, but formed a separate cluster, indicating that strain YIT 11859 represents a novel member of the family . Fatty acid analysis demonstrated the presence of a high concentration of C 9 (75 % of the total). The main respiratory quinones were menaquinone (MK–6) and methylated menaquinone (MMK-6). The G+C content of the DNA was 49.8 mol%. These results suggest that strain YIT 11859 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is YIT 11859 (=DSM 21040 =JCM 15078).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.002519-0
2009-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1793.html?itemId=/content/journal/ijsem/10.1099/ijs.0.002519-0&mimeType=html&fmt=ahah

References

  1. Chonan, O., Matsumoto, K. & Watanuki, M. ( 1995; ). Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem 59, 236–239.[CrossRef]
    [Google Scholar]
  2. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y.-W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  3. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. ( 2005; ). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.[CrossRef]
    [Google Scholar]
  4. Engberg, J., On, S. L., Harrington, C. S. & Gerner-Smidt, P. ( 2000; ). Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J Clin Microbiol 38, 286–291.
    [Google Scholar]
  5. Ezaki, T., Saidi, S. M., Liu, S. L., Hashimoto, Y., Yamamoto, H. & Yabuuchi, E. ( 1990; ). Rapid procedure to determine the DNA base composition from small amounts of gram-positive bacteria. FEMS Microbiol Lett 55, 127–130.
    [Google Scholar]
  6. Felsenstein, J. ( 2004; ). phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Finegold, S. M., Attebery, H. R. & Sutter, V. L. ( 1974; ). Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27, 1456–1469.
    [Google Scholar]
  8. Greetham, H. L., Collins, M. D., Gibson, G. R., Giffard, C., Falsen, E. & Lawson, P. A. ( 2004; ). Sutterella stercoricanis sp. nov., isolated from canine faeces. Int J Syst Evol Microbiol 54, 1581–1584.[CrossRef]
    [Google Scholar]
  9. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  10. Hayashi, H., Sakamoto, M. & Benno, Y. ( 2002; ). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46, 535–548.[CrossRef]
    [Google Scholar]
  11. Hold, G. L., Pryde, S. E., Russell, V. J., Furrie, E. & Flint, H. J. ( 2002; ). Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39, 33–39.[CrossRef]
    [Google Scholar]
  12. Holdeman, L. V., Good, I. J. & Moore, W. E. ( 1976; ). Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol 31, 359–375.
    [Google Scholar]
  13. Holdeman, L. V., Cato, E. P. & Moore, W. E. C. ( 1977; ). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  14. Katsuta, A., Adachi, K., Matsuda, S., Shizuri, Y. & Kasai, K. ( 2005; ). Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55, 1851–1855.[CrossRef]
    [Google Scholar]
  15. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  16. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  17. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  18. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. ( 2006; ). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.[CrossRef]
    [Google Scholar]
  19. Mai, V., Greenwald, B., Morris, J. G., Jr, Raufman, J. P. & Stine, O. C. ( 2006; ). Effect of bowel preparation and colonoscopy on post-procedure intestinal microbiota composition. Gut 55, 1822–1823.[CrossRef]
    [Google Scholar]
  20. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  21. Moore, W. E. & Holdeman, L. V. ( 1974; ). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27, 961–979.
    [Google Scholar]
  22. Morotomi, M., Nagai, F., Sakon, H. & Tanaka, R. ( 2008; ). Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58, 2716–2720.[CrossRef]
    [Google Scholar]
  23. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  24. Pearson, W. R. & Lipman, D. J. ( 1985; ). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef]
    [Google Scholar]
  25. Rajilić-Stojanović, M., Smidt, H. & de Vos, W. M. ( 2007; ). Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9, 2125–2136.[CrossRef]
    [Google Scholar]
  26. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  27. Sakon, H., Nagai, F., Morotomi, M. & Tanaka, R. ( 2008; ). Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58, 970–975.[CrossRef]
    [Google Scholar]
  28. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  30. Wang, X., Heazlewood, S. P., Krause, D. O. & Florin, T. H. ( 2003; ). Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95, 508–520.[CrossRef]
    [Google Scholar]
  31. Wexler, H. M., Reeves, D., Summanen, P. H., Molitoris, E., McTeague, M., Duncan, J., Wilson, K. H. & Finegold, S. M. ( 1996; ). Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int J Syst Bacteriol 46, 252–258.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.002519-0
Loading
/content/journal/ijsem/10.1099/ijs.0.002519-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1793 - 1797

Cellular fatty acid compositions of strain YIT 11859 and related type species in the family .

Maximum-likelihood (Fig. S1) and maximum-parsimony (Fig. S2) phylogenetic trees based on 16S rRNA gene sequences, showing the nearest neighbours of gen. nov., sp. nov. YIT 11859 within the family .

[PDF file of Supplementary Table and Figures](135 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error