Eleven strains of halophilic, facultative anaerobes isolated from healthy and diseased and (bony fishes) cultured in Spanish Mediterranean fisheries have been studied by a polyphasic approach that included a wide phenotypic characterization, DNA–DNA hybridization and phylogenetic analysis using 16S rRNA, and gene sequences. All strains were phylogenetically related to species and . On the basis of sequence analysis and DNA–DNA hybridization data, eight of the strains were identified as . The remaining three strains formed a tight, independent clade in all sequence analyses and showed less than 70 % DNA–DNA hybridization with strains of the closest species, from which they could be differentiated by several phenotypic traits. We conclude that these three strains represent a novel species in the genus and we thus propose the name sp. nov., with strain DAl 1-1-5 (=CECT 7320 =CAIM 661) as the type strain. In addition, we propose the reclassification of Denner 2002 as comb. nov. (type strain RE35/F12 =CIP 107077 =DSM 14347 =CECT 7414) and we provide an emended description of the genus .


Article metrics loading...

Loading full text...

Full text loading...



  1. Baumann, P. & Baumann, L.(1981). The marine gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In The Prokaryotes, vol. I, pp. 1302–1331. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. Schlegel. Berlin & Heidelberg: Springer.
  2. Company, R., Sitjà-Bobadilla, A., Pujalte, M. J., Garay, E., Álvarez-Pellitero, P. & Pérez-Sánchez, J.(1999). Bacterial and parasitic pathogens in cultured common dentex (Dentex dentex L.). J Fish Dis 22, 299–310. [Google Scholar]
  3. Denner, E. B. M., Vybiral, D., Fischer, U. R., Velimirov, B. & Busse, H.-J.(2002).Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 μm-filterable marine bacterium. Int J Syst Evol Microbiol 52, 549–553. [Google Scholar]
  4. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  5. Le Roux, F., Goubet, A., Thompson, F. L., Faury, N., Gay, M., Swings, J. & Saulnier, D.(2005).Vibrio gigantis sp. nov., isolated from the haemolymph of cultured oysters (Crassostrea gigas). Int J Syst Evol Microbiol 55, 2251–2255.[CrossRef] [Google Scholar]
  6. Macián, M. C., Ludwig, W., Schleifer, K. H., Garay, E., Aznar, R., Grimont, P. A. D. & Pujalte, M. J.(2001a).Vibrio lentus sp. nov., isolated from Mediterranean oysters. Int J Syst Evol Microbiol 51, 1449–1456. [Google Scholar]
  7. Macián, M. C., Ludwig, W., Schleifer, K. H., Garay, E. & Pujalte, M. J.(2001b).Thalassomonas viridans gen. nov., sp. nov., a novel marine γ-proteobacterium. Int J Syst Evol Microbiol 51, 1283–1289. [Google Scholar]
  8. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  9. Pitcher, D. G., Saunders, N. A. & Owen, R. J.(1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef] [Google Scholar]
  10. Posada, D. & Buckley, T. R.(2004). Model selection and model averaging in phylogenetics: advantages of the Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53, 793–808.[CrossRef] [Google Scholar]
  11. Posada, D. & Crandall, K. A.(1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef] [Google Scholar]
  12. Pujalte, M. J., Sitjà-Bobadilla, A., Álvarez-Pellitero, P. & Garay, E.(2003). Carriage of potentially fish-pathogenic bacteria in Sparus aurata cultured in Mediterranean fish farms. Dis Aquat Organ 54, 119–126.[CrossRef] [Google Scholar]
  13. Sawabe, T., Kita-Tsukamoto, K. & Thompson, F. L.(2007). Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189, 7932–7936.[CrossRef] [Google Scholar]
  14. Swofford, D. L.(2002).paup*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  15. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  16. Thompson, F. L., Hoste, B., Thompson, C. C., Goris, J., Gómez-Gil, B., Hys, L., De Vos, P. & Swings, J.(2002).Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. Int J Syst Evol Microbiol 52, 2015–2022.[CrossRef] [Google Scholar]
  17. Thompson, F. L., Hoste, B., Vandemeulebroecke, K. & Swings, J.(2003). Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 53, 1615–1617.[CrossRef] [Google Scholar]
  18. Thompson, F. L., Gevers, D., Thompson, C. C., Dawyndt, P., Naser, S., Hoste, B., Munn, C. & Swings, J.(2005a). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71, 5107–5115.[CrossRef] [Google Scholar]
  19. Thompson, F. L., Thompson, C. C., Naser, S., Hoste, B., Vandemeulebroecke, K., Munn, C., Bourne, D. & Swings, J.(2005b).Photobacterium rosenbergii sp. nov. and Enterovibrio coralii sp. nov., vibrios associated with coral bleaching. Int J Syst Evol Microbiol 55, 913–917.[CrossRef] [Google Scholar]
  20. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  21. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]

Data & Media loading...


Colonies of sp. nov. DAl 1-1-5 grown on MA at 20–24 °C for 5 days, showing pigment production: (a) whole plate; (b) close-up.


Colonies of sp. nov. DAl 1-1-5 grown on MA at 20–24 °C for 5 days, showing pigment production: (a) whole plate; (b) close-up.


Maximum-parsimony (Fig. S2) and maximum-likelihood (Fig. S3) trees based on partial 16S rRNA, and gene sequences of sp. nov., comb. nov., , , and and the concatenated dataset. [PDF](29 KB)


[PDF file of Supplementary Tables S1–S3](134 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error