A mesophilic, methylotrophic methanogen, strain MobM, was isolated from a natural gas field in Japan. Strain MobM grew on methanol and methylamines, but not on H/CO, formate, acetate or dimethyl sulfide. The cells were motile, irregular cocci (diameter, 0.9–1.2 μm) and occurred singly, in pairs, as tetracocci or (occasionally) as aggregates. Strain MobM grew at 9–37 °C (optimally at 30 °C) and at pH 6.1–7.8 (optimally at pH 6.5). Sodium and magnesium were required for growth, at 0.1–1.0 M Na (optimally at 0.35 M) and 10–400 mM Mg (optimally at 15–25 mM). The G+C content of the genomic DNA was 42.4 mol%. 16S rRNA gene sequencing revealed that the isolate is a member of the genus , but distinct from its closest neighbours, DSM 2278 (sequence similarity, 98.0 %) and DSM 3029 (98.1 %). On the basis of phenotypic and phylogenetic features of MobM, it is clear that this strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MobM (=DSM 21213=NBRC 104158).


Article metrics loading...

Loading full text...

Full text loading...



  1. Boone, D. R. & Whitman, W. B.(1988). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38, 212–219.[CrossRef] [Google Scholar]
  2. Boone, D. R., Whitman, W. B. & Koga, Y.(2001). Order III. Methanosarcinales ord. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 268–294. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  3. Igari, S. I. & Sakata, S.(1989). Origin of natural gas of dissolved-in-water type in Japan inferred from chemical and isotopic compositions: occurrence of dissolved gas of thermogenic origin. Geochem J 23, 139–142.[CrossRef] [Google Scholar]
  4. Kadam, P. C. & Boone, D. R.(1995). Physiological characterization and emended description of Methanolobus vulcani. Int J Syst Bacteriol 45, 400–402.[CrossRef] [Google Scholar]
  5. Kadam, P. C., Ranade, D. R., Mandelco, L. & Boone, D. R.(1994). Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 44, 603–607.[CrossRef] [Google Scholar]
  6. Kamagata, Y. & Mikami, E.(1991). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef] [Google Scholar]
  7. Kamagata, Y., Fulthorpe, R. R., Tamura, K., Takami, H., Forney, L. J. & Tiedje, J. M.(1997). Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63, 2266–2272. [Google Scholar]
  8. Konig, H. & Stetter, K. O.(1982). Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig C3, 478–490. [Google Scholar]
  9. Kunisue, S., Mita, I. & Waki, F.(2002). Relationship between subsurface geology and productivity of natural gas and iodine in the Mobara gas field, Boso Peninsula, central Japan. J Jpn Assoc Pet Tech 67, 83–96.[CrossRef] [Google Scholar]
  10. Liu, Y., Boone, D. R. & Choy, C.(1990).Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40, 111–116.[CrossRef] [Google Scholar]
  11. Mochimaru, H., Uchiyama, H., Yoshioka, H., Imachi, H., Hoaki, T., Tamaki, H., Nakamura, K., Sekiguchi, Y. & Kamagata, Y.(2007). Methanogen diversity in deep subsurface gas-associated water at the Minami-Kanto gas field in Japan. Geomicrobiol J 24, 93–100.[CrossRef] [Google Scholar]
  12. Nakamura, K., Terada, T., Sekiguchi, Y., Shinzato, N., Meng, X. Y., Enoki, M. & Kamagata, Y.(2006). Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl Environ Microbiol 72, 6907–6913.[CrossRef] [Google Scholar]
  13. Oremland, R. S. & Boone, D. R.(1994).Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 44, 573–575.[CrossRef] [Google Scholar]
  14. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  15. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H.(2000).Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef] [Google Scholar]
  16. Sudo, Y.(1967). Geochemical study of brine from oil and gas fields in Japan. J Jpn Assoc Pet Technol (Tokyo) 32, 286–296.[CrossRef] [Google Scholar]
  17. Swofford, D. L.(2003).paup*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  18. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  19. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 714 – 718

Effects of temperature (a) and salinity (b) on the specific growth rate of strain MobM [ PDF] (315 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error