1887

Abstract

A bacterial strain, designated CKOBP-6, isolated from a contaminated laboratory plate, was characterized by using a polyphasic taxonomic approach. Chemotaxonomic and morphological properties of the strain were consistent with its classification in the genus . Cells were Gram-variable, aerobic, sporulating, motile rods. 16S rRNA gene sequence analysis demonstrated that this novel isolate was unique, showing 94.6 % sequence similarity to NBRC 15660 and lower levels of similarity to KCTC 3950 (93.8 %) and A35 (93.8 %). The novel isolate could be distinguished from the type strains of all of these species based on a range of phenotypic data. The major cellular phospholipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and one unknown phosphoglycolipid. The predominant isoprenologue was an unsaturated menaquinone with seven isoprene units (MK-7). The major fatty acids of strain CKOBP-6 were C (12.0 %), anteiso-C (52.0 %) and iso-C (16.4 %). The GC content of the genomic DNA was 51.2 mol%. It is evident from the genotypic and phenotypic data that strain CKOBP-6 should be classified as a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CKOBP-6 (=BCRC 17728=LMG 24216).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.001495-0
2009-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/1/125.html?itemId=/content/journal/ijsem/10.1099/ijs.0.001495-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  2. Chen, W. M., Laevens, S., Lee, T. M., Coenye, T., de Vos, P., Mergeay, M. & Vandamme, P. ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51, 1729–1735.[CrossRef]
    [Google Scholar]
  3. Chung, Y. C., Kobayashi, T., Kanai, H., Akiba, T. & Kudo, T. ( 1995; ). Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococccus profundus DT5432. Appl Environ Microbiol 61, 1502–1506.
    [Google Scholar]
  4. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  5. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. GCG ( 1995; ). Wisconsin Package Version 8.1 Program Manual. Madison, WI: Genetics Computer Group.
  8. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  9. Gregersen, T. ( 1978; ). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef]
    [Google Scholar]
  10. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  11. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  13. Kuroshima, K.-I., Sakane, T., Takata, R. & Yokota, A. ( 1996; ). Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus. Int J Syst Bacteriol 46, 76–80.[CrossRef]
    [Google Scholar]
  14. Lányi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  15. Lee, J.-S., Pyun, Y.-R. & Bae, K. S. ( 2004; ). Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. Int J Syst Evol Microbiol 54, 929–933.[CrossRef]
    [Google Scholar]
  16. Lim, J.-M., Jeon, C. O., Lee, J.-C., Xu, L.-H., Jiang, C.-L. & Kim, C.-J. ( 2006; ). Paenibacillus gansuensis sp. nov., isolated from desert soil of Gansu Province in China. Int J Syst Evol Microbiol 56, 2131–2134.[CrossRef]
    [Google Scholar]
  17. MacFaddin, J. F. ( 2000; ). Biochemical Tests for the Identification of Medical Bacteria, 3rd edn. Baltimore, MD: Williams & Wilkins.
  18. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  19. Powers, E. M. ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758.
    [Google Scholar]
  20. Roux, V. & Raoult, D. ( 2004; ). Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54, 1049–1054.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. ( 1997; ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef]
    [Google Scholar]
  23. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Microbiology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  24. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  25. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  26. Ventosa, A., Marquez, M. C., Kocur, M. & Tindall, B. J. ( 1993; ). Comparative study of ‘‘Micrococcus sp.’’ strains CCM 168 and CCM 1405 and members of the genus Salinicoccus. Int J Syst Bacteriol 43, 245–248.[CrossRef]
    [Google Scholar]
  27. Xie, C.-H. & Yokota, A. ( 2007; ). Paenibacillus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 57, 70–72.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.001495-0
Loading
/content/journal/ijsem/10.1099/ijs.0.001495-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 125 - 129

Extended neighbour-joining tree based on 16S rRNA gene sequences. [PDF](448 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error