1887

Abstract

An aerobic, moderately halophilic, Gram-negative, motile, non-sporulating rod-shaped bacterium, designated strain A10, was isolated from the surface of leaves of the black mangrove and was subjected to a polyphasic taxonomic study. Strain A10 was able to grow at NaCl concentrations in the range 5–17.5 % (w/v) with optimum growth at 10 % (w/v) NaCl. Growth occurred at temperatures of 20–40 °C (optimal growth at 37 °C) and pH 5.5–8.5 (optimal growth at pH 7.0–8.0). The major respiratory quinone was ubiquinone 9. The major fatty acids were C, C 7, C cyclo 8 and C 3-OH. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and unidentified phospholipids, glycolipids and an aminoglycolipid. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain A10 is closely related to MW2a (95.7 % sequence similarity), SW32 (95.2 %) and GC2.1 (95.0 %). Strain A10 formed a coherent phylogenetic branch with these three species, separated from other species of and closely related genera (with 16S rRNA gene sequence similarities below 94.0 %). A complete 23S rRNA gene sequence comparison of strain A10 with closely related species confirmed the phylogenetic position of the novel isolate, forming a branch with the species and , separated from other species of the genera belonging to the family (showing sequence similarities below 91.7 %). DNA–DNA hybridization studies between strain A10 and MW2a, DSM 15357 and CG2.1 were 21, 17 and 10 %, respectively. These levels of DNA–DNA relatedness were low enough to classify strain A10 as representing a genotypically distinct species. Overall, the phenotypic, genotypic, chemotaxonomic and phylogenetic results demonstrated that strain A10 represents a new genus and species. The name gen. nov., sp. nov. is proposed, with strain A10 (=CCM 7415=CECT 7220) as the type strain. This is the type species of the new proposed genus, which belongs to the family . In addition, our data support the placement of the species , and within this new genus, as comb. nov., comb. nov. and comb. nov., respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.001461-0
2009-02-01
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/2/397.html?itemId=/content/journal/ijsem/10.1099/ijs.0.001461-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R. & Ventosa, A.(2005). The family Halomonadaceae. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.20. Edited by M. Dworkin. New York: Springer.
  2. Arahal, D. R., García, M. T., Ludwig, W., Schleifer, K. H. & Ventosa, A.(2001a). Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter, as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51, 1443–1448. [Google Scholar]
  3. Arahal, D. R., García, M. T., Vargas, C., Cánovas, D., Nieto, J. J. & Ventosa, A.(2001b).Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51, 1457–1462. [Google Scholar]
  4. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H. & Ventosa, A.(2002a). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207–211.[CrossRef] [Google Scholar]
  5. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A.(2002b). Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52, 241–249. [Google Scholar]
  6. Arahal, D. R., Vreeland, R. H., Litchfield, C. D., Mormile, M. R., Tindall, B. J., Oren, A., Bejar, V., Quesada, E. & Ventosa, A.(2007). Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57, 2436–2446.[CrossRef] [Google Scholar]
  7. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M.(1966). Antibiotic susceptibility testing by a standarized single disk method. Am J Clin Pathol 45, 493–496. [Google Scholar]
  8. Ben Ali Gam, Z., Abdelkafi, S., Casalot, L., Tholozan, J. L., Oueslati, R. & Labat, M.(2007).Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57, 2307–2313.[CrossRef] [Google Scholar]
  9. Cabrera, A., Aguilera, M., Fuentes, S., Incerti, C., Russell, N. J., Ramos-Cormenzana, A. & Monteoliva-Sánchez, M.(2007).Halomonas indalinina sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almería, southern Spain. Int J Syst Evol Microbiol 57, 376–380.[CrossRef] [Google Scholar]
  10. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  11. De Ley, J. & Tijtgat, R.(1970). Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36, 461–474.[CrossRef] [Google Scholar]
  12. Dussault, H. P.(1955). An improved technique for staining red-halophilic bacteria. J Bacteriol 70, 484–485. [Google Scholar]
  13. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E.(1988).Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef] [Google Scholar]
  14. Garriga, M., Ehrmann, M. A., Arnau, J., Hugas, M. & Vogel, R. F.(1998).Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48, 677–686.[CrossRef] [Google Scholar]
  15. Johnson, J. L.(1994). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  16. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  17. Koser, S. A.(1923). Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8, 493–520. [Google Scholar]
  18. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenernegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H.(1998). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef] [Google Scholar]
  19. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  20. Lugo, A. E. & Snedaker, S. C.(1975). Properties of a mangrove forest in southern Florida. In Actas, International Symposium on Biological Management of Mangroves, pp. 170–212. Edited by G. Walsh, S. C. Snedaker & H. Teas. Gainesville: University of Florida.
  21. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  22. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  23. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V.(2002). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef] [Google Scholar]
  24. Mellado, E., Moore, E. R. B., Nieto, J. J. & Ventosa, A.(1995). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45, 712–716.[CrossRef] [Google Scholar]
  25. Miller, L. T.(1982). Single derivation method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  26. Nieto, J. J., Fernández-Castillo, R., Márquez, M. C., Ventosa, A., Quesada, E. & Ruiz-Berraquero, F.(1989). Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55, 2385–2390. [Google Scholar]
  27. Ntougias, S., Zervakis, G. I. & Fasseas, C.(2007).Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol 57, 1975–1983.[CrossRef] [Google Scholar]
  28. Okamoto, T., Taguchi, H., Nakamura, K., Ikenaga, H., Kuraishi, H. & Yamasato, K.(1993).Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160, 333–337. [Google Scholar]
  29. Owen, R. J. & Hill, L. R.(1979). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Chemical Methods for Microbiologists, pp. 277–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  30. Quesada, E., Ventosa, A., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1984).Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34, 287–292.[CrossRef] [Google Scholar]
  31. Sehgal, S. N. & Gibbons, N. E.(1960). Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6, 165–169.[CrossRef] [Google Scholar]
  32. Soto-Ramírez, N., Sánchez-Porro, C., Rosas, S., González, W., Quiñones, M., Ventosa, A. & Montalvo-Rodríguez, R.(2007).Halomonas avicenniae sp. nov., isolated from the salty leaves of the black mangrove Avicennia germinans in Puerto Rico. Int J Syst Evol Microbiol 57, 900–905.[CrossRef] [Google Scholar]
  33. Soto-Ramírez, N., Sánchez-Porro, C., Rosas-Padilla, S., Almodóvar, K., Jiménez, G., Machado-Rodríguez, M., Zapata, M., Ventosa, A. & Montalvo-Rodríguez, R.(2008).Halobacillus mangrovi sp. nov., a moderately halophilic bacterium isolated from the black mangrove Avicennia germinans. Int J Syst Evol Microbiol 58, 125–130.[CrossRef] [Google Scholar]
  34. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  35. Stackebrandt, E., Fredericksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors(2002). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef] [Google Scholar]
  36. Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1982). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968. [Google Scholar]
  37. Ventosa, A., Gutierrez, M. C., Garcia, M. T. & Ruiz-Berraquero, F.(1989). Classification of Chromobacterium marismortui in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef] [Google Scholar]
  38. Ventosa, A., Nieto, J. J. & Oren, A.(1998). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544. [Google Scholar]
  39. Ventosa, A., Gutierrez, M. C., Kamekura, M. & Dyall-Smith, M. L.(1999). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49, 131–136.[CrossRef] [Google Scholar]
  40. Vreeland, R. H.(2005). Genus I. Halomonas. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, pp. 300–313. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer..
  41. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E.(1980).Halomonas elongata, a new genus and species of extremely salt tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef] [Google Scholar]
  42. Yoon, J.-H., Choi, S. H., Lee, K.-C., Kho, Y. H., Kang, K. H. & Park, Y.-H.(2001).Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51, 1171–1177.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.001461-0
Loading
/content/journal/ijsem/10.1099/ijs.0.001461-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 397 - 405

23S rRNA gene amplification and sequencing primers. [PDF](35 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error