1887

Abstract

Gram-positive, aerobic, non-spore-forming, irregular rod-shaped bacteria, designated strains AHU1791 and AHU1810, were isolated from a permafrost ice wedge in Alaska. Cells were motile by means of a polar flagellum. The strains were psychrophilic, growing at −5 to 25 °C. Phylogenetic analysis of 16S rRNA gene sequences indicated that the ice-wedge isolates formed a clade distinct from other genera affiliated with the family . The novel strains showed highest levels of 16S rRNA gene sequence similarity with members of the genera and (95.6–95.9 %). The level of 16S rRNA gene sequence similarity between strains AHU1791 and AHU1810 was 99.8 %. The cell-wall peptidoglycan type of the two strains was B2, containing 2,4-diaminobutyric acid as the diagnostic amino acid. The predominant menaquinones were MK-12 and MK-13 (strain AHU1791) and MK-11 and MK-12 (strain AHU1810). The major fatty acids of the two strains were 12-methyl tetradecanoic acid (anteiso-C), 14-methyl hexadecanoic acid (anteiso-C), 14-methyl pentadecanoic acid (iso-C) and 13-methyl tetradecanoic acid (iso-C). The DNA G+C contents of strains AHU1791 and AHU1810 were approximately 65 mol%. These phenotypic characteristics differentiated the ice-wedge strains from their closest phylogenetic neighbours, namely and the two recognized species of the genus . The sequences of the housekeeping genes coding for DNA gyrase subunit B (), RNA polymerase subunit B () and recombinase A () were almost identical between strains AHU1791 and AHU1810. Although the predominant menaquinones found in strains AHU1791 and AHU1810 were different, no other distinct differences were found with regard to other phenotypic and genotypic characteristics, indicating that the two strains were members of the same species. Accordingly, strains AHU1791 and AHU1810 are considered to represent a single novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is AHU1791 (=DSM 21135 =NBRC 104264).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.001354-0
2009-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/482.html?itemId=/content/journal/ijsem/10.1099/ijs.0.001354-0&mimeType=html&fmt=ahah

References

  1. Behrendt, U., Ulrich, A., Schumann, P., Naumann, D. & Suzuki, K. ( 2002; ). Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; polyphasic characterization of Subtercola pratensis sp. nov., Curtobacterium herbarum sp. nov. and Plantibacter flavus gen. nov., sp. nov. Int J Syst Evol Microbiol 52, 1441–1454.[CrossRef]
    [Google Scholar]
  2. Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E. ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221–230.[CrossRef]
    [Google Scholar]
  3. Evtushenko, L. I., Dorofeeva, L. V., Dobrovolskaya, T. G., Streshinskaya, G. M., Subbotin, S. A. & Tiedje, J. M. ( 2001; ). Agreia bicolorata gen. nov., sp. nov., to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila. Int J Syst Evol Microbiol 51, 2073–2079.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Hasegawa, T. ( 1985; ). In Classification and Identification of Microorganisms, pp. 109–118. Tokyo: Japan Scientific Societies Press (in Japanese).
  7. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  8. Kämpfer, P., Rainey, F. A., Andersson, M. A., Lassila, E.-L. N., Ulrych, U., Busse, H.-J., Mikkola, R. & Salkinoja-Salonen, M. ( 2000; ). Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50, 355–363.[CrossRef]
    [Google Scholar]
  9. Katayama, T., Tanaka, M., Moriizumi, J., Nakamura, T., Brouchkov, A., Douglas, T. A., Fukuda, M., Tomita, F. & Asano, K. ( 2007; ). Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol 73, 2360–2363.[CrossRef]
    [Google Scholar]
  10. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  11. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  12. Männistö, M. K., Schumann, P., Rainey, F. A., Kämpfer, P., Tsitko, I., Tiirola, M. A. & Salkinoja-Salonen, M. S. ( 2000; ). Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50, 1731–1739.
    [Google Scholar]
  13. Nakagawa, K., Tamura, T. & Kawasaki, H. ( 2001; ). In Identification Manual of Actinomycetes, pp. 83–133. Edited by The Society for Actinomycetes Japan. Tokyo: Business Center for Academic Societies Japan (in Japanese).
  14. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  15. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. & Glockner, F. O. ( 2007; ). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35, 7188–7196.[CrossRef]
    [Google Scholar]
  16. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  17. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  18. Schleifer, K. H., Plapp, R. & Kandler, O. ( 1967; ). Identification of threo-3-hydroxyglutamic acid in the cell wall of Microbacterium lacticum. Biochem Biophys Res Commun 28, 566–570.[CrossRef]
    [Google Scholar]
  19. Schumann, P., Behrendt, U., Ulrich, A. & Suzuki, K. ( 2003; ). Reclassification of Subtercola pratensis Behrendt et al. 2002 as Agreia pratensis comb. nov. Int J Syst Evol Microbiol 53, 2041–2044.[CrossRef]
    [Google Scholar]
  20. Sheridan, P. P., Loveland-Curtze, J., Miteva, V. I. & Brenchley, J. E. ( 2003; ). Rhodoglobus vestalii gen. nov., sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley lake. Int J Syst Evol Microbiol 53, 985–994.[CrossRef]
    [Google Scholar]
  21. Stanier, R. Y., Ingraham, J. L., Wheelis, M. L. & Painter, P. R. ( 1986; ). The methods of microbiology. In The Microbial World, 5th edn, p. 28. Englewood Cliffs, NJ: Prentice Hall.
  22. Suzuki, K. & Kudo, T. ( 2001; ). In Identification Manual of Actinomycetes, pp. 72–76. Edited by The Society for Actinomycetes Japan. Tokyo: Business Center for Academic Societies Japan (in Japanese).
  23. Suzuki, K., Sasaki, J., Uramoto, M., Nakase, T. & Komagata, K. ( 1997; ). Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. Int J Syst Bacteriol 47, 474–478.[CrossRef]
    [Google Scholar]
  24. Swofford, D. L. ( 2002; ). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  25. Tamaoka, J., Katayama-Fujimura, Y. & Kuraishi, H. ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54, 31–36.[CrossRef]
    [Google Scholar]
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  27. Uchida, K., Kudo, T., Suzuki, K. & Nakase, T. ( 1999; ). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45, 49–56.[CrossRef]
    [Google Scholar]
  28. Zhang, D.-C., Wang, H.-X., Cui, H.-C., Yang, Y., Liu, H.-C., Dong, X.-Z. & Zhou, P.-J. ( 2007; ). Cryobacterium psychrotolerans sp. nov., a novel psychrotolerant bacterium isolated from the China No. 1 glacier. Int J Syst Evol Microbiol 57, 866–869.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.001354-0
Loading
/content/journal/ijsem/10.1099/ijs.0.001354-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 482 - 486

Primers used for determination of housekeeping gene sequences

Effect of growth temperature on the cellular fatty acid composition of strain AHU1791

[PDF file of Supplementary Tables S1 and S2](48 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error