The aim of the present study was to re-examine the taxonomic position and structure of taxon K (also known as group K) within the complex (Bcc). For this purpose, a representative set of strains was examined by a traditional polyphasic taxonomic approach, by multilocus sequence typing (MLST) analysis and by analysis of available whole-genome sequences. Analysis of the gene sequence revealed three different lineages, designated -I, -II and -III. DNA–DNA hybridization experiments demonstrated that -I and -II isolates each represented a single novel species. However, DNA–DNA hybridization values of -II strains towards -III strains and among -III strains were at the threshold level for species delineation. By MLST, -I isolates were clearly distinguished from the others and represented a distinct lineage referred to as MLST-I, whereas -II and -III isolates formed a second MLST lineage referred to as MLST-II. A divergence value of 3.5 % was obtained when MLST-I was compared with MLST-II. The internal level of concatenated sequence divergence within MLST-I and MLST-II was 1.4 and 2.7 %, respectively; by comparison with the level of concatenated sequence divergence in established Bcc species, these data demonstrate that the MLST-I and MLST-II lineages represent two distinct species within the Bcc. The latter conclusion was supported by comparison of the whole-genome average nucleotide identity (ANI) level of MLST-I and MLST-II strains with strains of established Bcc species and by a whole-genome-based phylogenetic analysis. We formally propose to classify taxon K bacteria from the MLST-I and MLST-II lineages as sp. nov. (with strain J2956 =LMG 23361 =CCUG 55526 as the type strain) and sp. nov. (with strain 383 =ATCC 17760 =LMG 22485 =CCUG 55525 as the type strain), respectively. The MLST approach was confirmed as a valuable instrument in polyphasic taxonomic studies; more importantly, the cumulative data for about 1000 Bcc isolates analysed demonstrate that the 3 % concatenated sequence divergence level correlates with the 70 % DNA–DNA hybridization or 95 % whole-genome ANI threshold levels for species delineation.


Article metrics loading...

Loading full text...

Full text loading...



  1. Baldwin, A., Mahenthiralingam, E., Thickett, K. M., Honeybourne, D., Maiden, M. C., Govan, J. R., Speert, D. P., LiPuma, J. J., Vandamme, P. & Dowson, C. G.(2005). Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43, 4665–4673.[CrossRef] [Google Scholar]
  2. Berriatua, E., Ziluaga, I., Miguel-Virto, C., Uribarren, P., Juste, R., Laevens, S., Vandamme, P. & Govan, J. R.(2001). Outbreak of subclinical mastitis in a flock of dairy sheep associated with Burkholderia cepacia complex infection. J Clin Microbiol 39, 990–994.[CrossRef] [Google Scholar]
  3. Campana, S., Taccetti, G., Ravenni, N., Favari, F., Cariani, L., Sciacca, A., Savoia, D., Collura, A., Fiscarelli, E. & other authors(2005). Transmission of Burkholderia cepacia complex: evidence for new epidemic clones infecting cystic fibrosis patients in Italy. J Clin Microbiol 43, 5136–5142.[CrossRef] [Google Scholar]
  4. Castresana, J.(2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.[CrossRef] [Google Scholar]
  5. Coenye, T. & Vandamme, P.(2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef] [Google Scholar]
  6. Coenye, T., Vandamme, P., Govan, J. R. & LiPuma, J. J.(2001). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef] [Google Scholar]
  7. Cunha, M. V., Pinto-de-Oliveira, A., Meirinhos-Soares, L., Salgado, M. J., Melo-Cristino, J., Correia, S., Barreto, C. & Sá-Correia, I.(2007). Exceptionally high representation of Burkholderia cepacia among B. cepacia complex isolates recovered from the major Portuguese cystic fibrosis center. J Clin Microbiol 45, 1628–1633.[CrossRef] [Google Scholar]
  8. Dalmastri, C., Pirone, L., Tabacchioni, S., Bevivino, A. & Chiarini, L.(2005). Efficacy of species-specific recA PCR tests in the identification of Burkholderia cepacia complex environmental isolates. FEMS Microbiol Lett 246, 39–45.[CrossRef] [Google Scholar]
  9. Dalmastri, C., Baldwin, A., Tabacchioni, S., Bevivino, A., Mahenthiralingam, E., Chiarini, L. & Dowson, C.(2007). Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing. Environ Microbiol 9, 1632–1639.[CrossRef] [Google Scholar]
  10. Edgar, R. C.(2004).muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef] [Google Scholar]
  11. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  12. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K.(1998). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef] [Google Scholar]
  13. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M.(2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57, 81–91.[CrossRef] [Google Scholar]
  14. Guindon, S. & Gascuel, O.(2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  15. Haubold, B. & Hudson, R. R.(2000).lian 3.0: detecting linkage disequilibrium in multilocus data. Linkage analysis. Bioinformatics 16, 847–848.[CrossRef] [Google Scholar]
  16. Henry, D. A., Campbell, M. E., LiPuma, J. J. & Speert, D. P.(1997). Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35, 614–619. [Google Scholar]
  17. Henry, D. A., Mahenthiralingam, E., Vandamme, P., Coenye, T. & Speert, D. P.(2001). Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol 39, 1073–1078.[CrossRef] [Google Scholar]
  18. Jolley, K. A., Chan, M.-S. & Maiden, M. C.(2004). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86[CrossRef] [Google Scholar]
  19. Jones, D. T., Taylor, W. R. & Thornton, J. M.(1992). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275–282. [Google Scholar]
  20. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  21. Kenna, D. T., Yesilkaya, H., Forbes, K. J., Barcus, V. A., Vandamme, P. & Govan, J. R.(2006). Distribution and genomic location of active insertion sequences in the Burkholderia cepacia complex. J Med Microbiol 55, 1–10.[CrossRef] [Google Scholar]
  22. Konstantinidis, K. T. & Tiedje, J. M.(2005a). Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102, 2567–2572.[CrossRef] [Google Scholar]
  23. Konstantinidis, K. T. & Tiedje, J. M.(2005b). Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187, 6258–6264.[CrossRef] [Google Scholar]
  24. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  25. Lessie, T. G., Hendrickson, W., Manning, B. D. & Devereux, R.(1996). Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144, 117–128.[CrossRef] [Google Scholar]
  26. Li, L., Stoeckert, C. J., Jr & Roos, D. S.(2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189.[CrossRef] [Google Scholar]
  27. Mahenthiralingam, E. & Drevinek, P.(2007). Comparative genomics of Burkholderia species. In Burkholderia: Molecular Microbiology and Genomics, pp. 53–79. Edited by T. Coenye & P. Vandamme. Wymondham, UK: Horizon Bioscience.
  28. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R., Taylor, P. & Vandamme, P.(2000a). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913. [Google Scholar]
  29. Mahenthiralingam, E., Bischof, J., Byrne, S. K., Radomski, C., Davies, J. E., Av-Gay, Y. & Vandamme, P.(2000b). DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38, 3165–3173. [Google Scholar]
  30. Mahenthiralingam, E., Baldwin, A., Drevinek, P., Vanlaere, E., Vandamme, P., LiPuma, J. J. & Dowson, C. G.(2006). Multilocus sequence typing breathes life into a microbial metagenome. PLoS One 1, e17[CrossRef] [Google Scholar]
  31. Mahenthiralingam, E., Baldwin, A. & Dowson, C. G.(2008).Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104, 1539–1551.[CrossRef] [Google Scholar]
  32. Maynard Smith, J., Smith, N. H., O'Rourke, M. & Spratt, B. G.(1993). How clonal are bacteria? Proc Natl Acad Sci U S A 90, 4384–4388.[CrossRef] [Google Scholar]
  33. Mesbah, M. & Whitman, W. B.(1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef] [Google Scholar]
  34. Naser, S. M., Dawyndt, P., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenwerck, I., Vancanneyt, M. & Swings, J.(2007). Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57, 2777–2789.[CrossRef] [Google Scholar]
  35. Parke, J. L. & Gurian-Sherman, D.(2001). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225–258.[CrossRef] [Google Scholar]
  36. Payne, G. W., Vandamme, P., Morgan, S. H., LiPuma, J. J., Coenye, T., Weightman, A. J., Jones, T. H. & Mahenthiralingam, E.(2005). Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71, 3917–3927.[CrossRef] [Google Scholar]
  37. Pitcher, D. G., Saunders, N. A. & Owen, R. J.(1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef] [Google Scholar]
  38. Rozas, J., Sanchez-Delbarrio, J. C., Messeguer, X. & Rozas, R.(2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.[CrossRef] [Google Scholar]
  39. Souza, A. V., Moreira, C. R., Pasternak, J., Hirata, M. L., Saltini, D. A., Caetano, V. C., Ciosak, S., Azevedo, F. M., Severino, P. & other authors(2004). Characterizing uncommon Burkholderia cepacia complex isolates from an outbreak in a haemodialysis unit. J Med Microbiol 53, 999–1005.[CrossRef] [Google Scholar]
  40. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M.(1966). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef] [Google Scholar]
  41. Storms, V., Van Den Vreken, N., Coenye, T., Mahenthiralingam, E., LiPuma, J. J., Gillis, M. & Vandamme, P.(2004). Polyphasic characterisation of Burkholderia cepacia-like isolates leading to the emended description of Burkholderia pyrrocinia. Syst Appl Microbiol 27, 517–526.[CrossRef] [Google Scholar]
  42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  43. Vandamme, P., Holmes, B., Coenye, T., Goris, J., Mahenthiralingam, E., LiPuma, J. J. & Govan, J. R.(2003).Burkholderia cenocepacia sp. nov. – a new twist to an old story. Res Microbiol 154, 91–96.[CrossRef] [Google Scholar]
  44. Vanlaere, E., Coenye, T., Samyn, E., Van Den Plas, C., Govan, J., De Baets, F., De Boeck, K., Knoop, C. & Vandamme, P.(2005). A novel strategy for the isolation and identification of environmental Burkholderia cepacia complex bacteria. FEMS Microbiol Lett 249, 303–307.[CrossRef] [Google Scholar]
  45. Vanlaere, E., LiPuma, J. J., Baldwin, A., Henry, D., De Brandt, E., Mahenthiralingam, E., Speert, D., Dowson, C. & Vandamme, P.(2008).Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58, 1580–1590.[CrossRef] [Google Scholar]
  46. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D., Paulsen, I., Nelson, K. & other authors(2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74.[CrossRef] [Google Scholar]
  47. Vermis, K., Coenye, T., Mahenthiralingam, E., Nelis, H. J. & Vandamme, P.(2002). Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex. J Med Microbiol 51, 937–940. [Google Scholar]
  48. Waine, D. J., Henry, D. A., Baldwin, A., Speert, D. P., Honeybourne, D., Mahenthiralingam, E. & Dowson, C. G.(2007). Reliability of multilocus sequence typing of the Burkholderia cepacia complex in cystic fibrosis. J Cyst Fibros 6, 215–219.[CrossRef] [Google Scholar]
  49. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 1, pp. 102 - 111

Average nucleotide identity (ANI) among the strains studied

DNA base ratios and DNA–DNA binding values (%) of all strains examined

Isolates examined by MLST, showing their source, ST and allelic profile

Single-copy core genes that were concatenated and used to construct a robust maximum-likelihood species tree

Biochemical characteristics useful for the differentiation of established Bcc species and novel taxon K clusters

[PDF file of Supplementary Tables S1-S5](510 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error