A novel phenanthrene-degrading bacterium, designated strain Sphe3, was isolated from a creosote-contaminated soil in Greece. Cells were non-motile, Gram-positive, aerobic, and rod- to coccus-shaped. The strain was isolated on the basis of formation of a clear zone on agar plates sprayed with phenanthrene. Optimal growth occurred at 30 °C. The G+C content of the DNA was 65.7 mol%. The polar lipid pattern of strain Sphe3 consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The dominant fatty acids were iso-C, anteiso-C, iso-C, C and anteiso-C, representing >86 % of the total fatty acids. The predominant isoprenoid quinone of strain Sphe3 was menaquinone-8 (MK-8). Based on 16S rRNA gene sequence analysis, strain Sphe3 showed 99 and 98.9 % similarity to the type strains of and , respectively. Strain Sphe3 showed 91 % similarity to homologues of and based on gene sequence analysis. Based on 16S rRNA and gene sequence analysis and DNA–DNA hybridization analysis, as well as physiological and chemotaxonomic characteristics, it is concluded that strain Sphe3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Sphe3 (=DSM 18606 =LMG 23796).


Article metrics loading...

Loading full text...

Full text loading...



  1. Barnsley, E. A.(1983). Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol 154, 113–117. [Google Scholar]
  2. Cappuccino, J. G. & Sherman, N.(1996).Microbiology: a Laboratory Manual, 4th edn. Menlo Park, CA: Benjamin/Cummings.
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  5. Grifoll, M., Casellas, M., Bayona, J. M. & Solanas, A. M.(1992). Isolation and characterization of a fluorene-degrading bacterium: identification of ring oxidation and ring fission products. Appl Environ Microbiol 58, 2910–2917. [Google Scholar]
  6. Habe, H. & Omori, T.(2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67, 225–243.[CrossRef] [Google Scholar]
  7. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  8. Iwabuchi, T. & Harayama, S.(1997). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 179, 6488–6494. [Google Scholar]
  9. Iwabuchi, T. & Harayama, S.(1998). Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 273, 8332–8336.[CrossRef] [Google Scholar]
  10. Johnson, J. L.(1994). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 665–666. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  11. Kallimanis, A., Frillingos, S., Drainas, C. & Koukkou, A. I.(2007). Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3. Appl Microbiol Biotechnol 76, 709–717.[CrossRef] [Google Scholar]
  12. Kanaly, R. A. & Harayama, S.(2000). Biodegradation of high-molecular-weight PAHs by bacteria. J Bacteriol 182, 2059–2067.[CrossRef] [Google Scholar]
  13. Keddie, R. M., Collins, M. D. & Jones, D.(1986). Genus Arthrobacter Conn and Dimmick 1947, 300AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1288–1301. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  14. Kiyohara, H. & Nagao, K.(1978). The catabolism of phenanthrene and naphthalene by bacteria. J Gen Microbiol 105, 69–75.[CrossRef] [Google Scholar]
  15. Kiyohara, H., Kazutaka, N. & Yana, K.(1982). Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43, 454–457. [Google Scholar]
  16. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  17. Loveland-Curtze, J., Sheridan, P. P., Gutshall, K. R. & Brenchley, J. E.(1999). Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus, sp. nov. Arch Microbiol 171, 355–363.[CrossRef] [Google Scholar]
  18. Mueller, J. G., Chapman, P. J. & Pritchard, P. H.(1989). Creosote-contaminated sites. Environ Sci Technol 23, 1197–1201.[CrossRef] [Google Scholar]
  19. Rosa-Putra, S., Hemmerlin, A., Epperson, J., Bach, T. J., Guerra, L. H. & Rohmer, M.(2001). Zeaxanthin and menaquinone-7 biosynthesis in Sphingobacterium multivorum via the methylerythritol phosphate pathway. FEMS Microbiol Lett 204, 347–353.[CrossRef] [Google Scholar]
  20. Sambrook, J., Fritsch, E. F. & Maniatis, T.(1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Schippers-Lammertse, A. F., Muijsers, A. O. & Klatser-Oedekerk, K. B.(1963).Arthrobacter polychromogenes nov. spec., its pigments, and a bacteriophage of this species. Antonie van Leeuwenhoek 29, 1–15.[CrossRef] [Google Scholar]
  22. Seo, J. S., Keum, Y. S., Hu, Y., Lee, S. E. & Li, Q. X.(2006). Phenanthrene degradation in Arthrobacter sp. Pl-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65, 2388–2394.[CrossRef] [Google Scholar]
  23. Sguros, P. L.(1955). Microbial transformations of the tobacco alkaloids. J Bacteriol 69, 28–37. [Google Scholar]
  24. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  25. Stackebrandt, E. & Liesack, W.(1993). Nucleic acids and classification. In Handbook of New Bacterial Systematics, pp. 152–189. Edited by M. Goodfellow & A. G. O'Donnell. London: Academic Press.
  26. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  27. Van Hamme, J. D., Singh, A. & Ward, O. P.(2003). Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67, 503–549.[CrossRef] [Google Scholar]
  28. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  29. Westerberg, K., Elvang, A. M., Stackebrandt, E. & Jansson, J. K.(2000).Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50, 2083–2092.[CrossRef] [Google Scholar]
  30. Zhang, H., Kallimanis, A., Koukkou, A. I. & Drainas, C.(2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65, 124–131. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error