1887

Abstract

A novel weakly halotolerant, sulfate-reducing bacterium, designated strain RB22, was isolated from exhaust water of a Tunisian oil refinery. Cells of strain RB22 were Gram-negative, motile, vibrio-shaped or sigmoid and non-spore-forming, and occurred singly or in chains. Strain RB22 grew between 15 and 45 °C (optimum, 37 °C) and at pH 4.5 to 9 (optimum, pH 7). NaCl was not required for growth, but the strain tolerated high NaCl concentrations (up to 70 g l) with an optimum of 40 g l. Sulfate, thiosulfate, sulfite and elemental sulfur served as electron acceptors, but not fumarate. Nitrate and nitrite were not reduced. Strain RB22 utilized lactate, formate, fumarate, succinate, glycerol, H+CO and methanol as substrates. The DNA G+C content was found to be 59.6 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the isolate was a member of the genus , with no close relatives at the species level (16S rRNA gene sequence similarity of less than 95 %). Strain RB22 exhibited levels of 16S rRNA gene sequence similarity of 94.6 and 94.12 % to the type strains of the closely related species and , respectively. On the basis of genotypic and phylogenetic characteristics, and significant phenotypic differences, we suggest that strain RB22 represents a novel species, for which the name sp. nov. is proposed. The type strain is RB22 (=NCIMB 14400=JCM 15076=DSM 19275).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000943-0
2009-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1059.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000943-0&mimeType=html&fmt=ahah

References

  1. Abdelkafi, S., Labat, M., Casalot, L., Chamkha, M. & Sayadi, S. ( 2006a; ). Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolising bacterium that decarboxylates other cinnamic acids under hypersaline conditions. FEMS Microbiol Lett 255, 108–114.[CrossRef]
    [Google Scholar]
  2. Abdelkafi, S., Sayadi, S., Ben Ali Gam, Z., Casalot, L. & Labat, M. ( 2006b; ). Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262, 115–120.[CrossRef]
    [Google Scholar]
  3. Abildgaard, L., Nielsen, M. B., Kjeldsen, K. U. & Ingvorsen, K. ( 2006; ). Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulfate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 56, 1019–1024.[CrossRef]
    [Google Scholar]
  4. Alazard, D., Dukan, S., Urios, A., Verhé, F., Bouabida, N., Morel, F., Thomas, P., Garcia, J.-L. & Ollivier, B. ( 2003; ). Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53, 173–178.[CrossRef]
    [Google Scholar]
  5. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  6. Badziong, W., Thauer, R. K. & Zeikus, J. G. ( 1978; ). Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116, 41–49.[CrossRef]
    [Google Scholar]
  7. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  8. Ben Ali Gam, Z., Abdelkafi, S., Casalot, L., Tholozan, J.-L., Oueslati, R. & Labat, L. ( 2007; ). Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic moderately halophilic bacterium isolated from an oilfield water, and emended description of the family Halomonadaceae. Int J Syst Evol Microbiol 57, 2307–2313.[CrossRef]
    [Google Scholar]
  9. Ben Dhia-Thabet, O., Fardeau, M. L., Suarez-Nuñez, C., Hamdi, M., Thomas, P., Ollivier, B. & Alazard, D. ( 2007; ). Desulfovibrio marinus sp. nov., a moderately halophilic sulfate-reducing bacterium isolated from marine sediments in Tunisia. Int J Syst Evol Microbiol 57, 2167–2170.[CrossRef]
    [Google Scholar]
  10. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  11. Birkeland, N. K. ( 2005; ). Sulfate-reducing bacteria and archaea. In Petroleum Microbiology, pp. 35–54. Edited by B. Ollivier & M. Magot. Washington, DC: American Society for Microbiology.
  12. Caumette, P., Cohen, Y. & Matheron, R. ( 1991; ). Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from solar lake (Sinai). Syst Appl Microbiol 14, 33–38.[CrossRef]
    [Google Scholar]
  13. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1140. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  14. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulphides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  15. Dang, P. N., Dang, T. C. H., Lai, T. H. & Stan-Lotter, H. ( 1996; ). Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2, 385–392.[CrossRef]
    [Google Scholar]
  16. Feio, M. J., Beech, I. B., Carepo, M., Lopes, J. M., Cheug, C. W. S., Franco, R., Guezennec, J., Smith, J. R., Mitchell, J. I. & other authors ( 1998; ). Isolation and characterisation of a novel sulfate-reducing bacterium of the Desulfovibrio genus. Anaerobe 4, 117–130.[CrossRef]
    [Google Scholar]
  17. Feio, M. J., Zinkevich, V., Beech, I. B., Llobet-Brossa, E., Eaton, P., Schmitt, J. & Guezennec, J. ( 2004; ). Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. Int J Syst Evol Microbiol 54, 1747–1752.[CrossRef]
    [Google Scholar]
  18. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  19. George, J., Purushothaman, C. S. & Shouche, Y. S. ( 2008; ). Isolation and characterization of sulfate-reducing bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India. World J Microbiol Biotechnol 24, 681–685.[CrossRef]
    [Google Scholar]
  20. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  21. Hamilton, W. A. ( 1985; ). Sulfate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39, 195–217.[CrossRef]
    [Google Scholar]
  22. Haouari, O., Fardeau, M. L., Casalot, L., Tholozan, J. L., Hamdi, M. & Ollivier, B. ( 2006; ). Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov. Int J Syst Evol Microbiol 56, 2909–2913.[CrossRef]
    [Google Scholar]
  23. Hungate, R. E. ( 1969; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  24. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  25. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  26. Magot, M., Caumette, P., Desperrier, J. M., Matheron, R., Dauga, C., Grimont, F. & Carreau, L. ( 1992; ). Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int J Syst Bacteriol 42, 398–403.[CrossRef]
    [Google Scholar]
  27. Magot, M., Basso, O., Tardy-Jacquenod, C. & Caumette, P. ( 2004; ). Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int J Syst Evol Microbiol 54, 1693–1697.[CrossRef]
    [Google Scholar]
  28. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M. ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  29. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  30. Miranda-Tello, E., Fardeau, M.-L., Cayol, J.-L., Thomas, P., Ostoa, P., Ramírez, F., Fernández, L., Garcia, J.-L. & Ollivier, B. ( 2003; ). Desulfovibrio capillatus sp. nov., a long-chained sulfate-reducing bacterium isolated from Gulf of Mexico oil well. Anaerobe 9, 97–103.[CrossRef]
    [Google Scholar]
  31. Motamedi, M. & Pedersen, K. ( 1998; ). Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Aspo hard rock laboratory, Sweden. Int J Syst Bacteriol 48, 311–315.[CrossRef]
    [Google Scholar]
  32. Reichenbecher, W. & Schink, B. ( 1997; ). Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 168, 338–344.[CrossRef]
    [Google Scholar]
  33. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  34. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  35. Tardy-Jacquenod, C., Magot, M., Laigret, F., Patel, B. K. C., Guezennec, J., Matheron, R. & Caumette, P. ( 1996; ). Desulfovibrio gabonensis sp. nov., a new moderately halophilic, sulfate-reducing bacterium isolated from an oil pipeline. Int J Syst Bacteriol 46, 710–715.[CrossRef]
    [Google Scholar]
  36. Tsu, I. H., Huang, C. Y., Garcia, J.-L., Patel, B. K. C., Cayol, J. L., Baresi, L. & Mah, R. A. ( 1998; ). Isolation and characterization of Desulfovibrio senezii sp. nov., a halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of Desulfovibrio fructosovorans as a new species. Arch Microbiol 170, 313–317.[CrossRef]
    [Google Scholar]
  37. Vandieken, V., Knoblauch, C. & Jørgensen, B. B. ( 2006; ). Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J Syst Evol Microbiol 56, 681–685.[CrossRef]
    [Google Scholar]
  38. Warthmann, R., Vasconcelos, C., Sass, H. & McKenzie, J. A. ( 2005; ). Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremophiles 9, 255–261.[CrossRef]
    [Google Scholar]
  39. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000943-0
Loading
/content/journal/ijsem/10.1099/ijs.0.000943-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error