A strictly anaerobic, thermophilic bacterium, designated strain RC3, was isolated from microbial mats colonizing thermal waters of a run-off channel formed by free-flowing waters from a bore well (registered no. 17263) of the Great Artesian Basin, Australia. The slightly curved rods (2.5–4.2×0.8–1.0 μm) of strain RC3 stained Gram-positive and grew optimally in tryptone-yeast extract-glucose medium at 60 °C (range 45–70 °C) and pH 7 (range pH 5–9). Strain RC3 grew poorly on yeast extract (0.2 %) but did not grow on tryptone (0.2 %) as a sole carbon source; yeast extract was required for growth on other energy sources, which included glucose, fructose, galactose, xylose, maltose, sucrose, raffinose, mannose, cellobiose, cellulose, starch, amylopectin, xylan, peptone, amyl media (Research Achievement), threonine and pyruvate but did not include arabinose, ribose, lactose, CM-cellulose, -inositol, mannitol, chitin, casein, formate, acetate, succinate, propionate, lactate, benzoate, glycerol, ethanol, Casamino acids, arginine, alanine, serine, glycine, glutamine, leucine, isoleucine, methionine or aspartate. The end products of glucose fermentation were ethanol and acetate. In the presence of 0.2 % yeast extract, iron(III), manganese(IV) and elemental sulfur were reduced but not sulfate, sulfite, thiosulfate, nitrate or nitrite. Iron(III) was also reduced in the presence of peptone, tryptone, amyl media, threonine and glycerol but not chitin, xylan, pectin, starch, pyruvate, acetate, benzoate, lactate, propionate, succinate, inositol, ethanol, mannitol, arginine, glutamine or serine. Strain RC3 was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). In the presence of iron(III) and glycerol, increased concentrations of Fe(II) corresponded to increased cell numbers, demonstrating that strain RC3 was able to conserve energy to support growth from the reduction of Fe(III) to Fe(II). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and NaCl concentrations greater than 2 % inhibited growth. The G+C content of the DNA was 34±1 mol% as determined by the thermal denaturation ( ) method. 16S rRNA gene sequence analysis indicated that strain RC3 was affiliated to (95.8 % similarity to the type strain) and to other species (average similarity of 91.6 %) within the phylum . On the basis of phylogenetic and phenotypic characteristics, it is proposed that strain RC3 should be classified in the genus as a representative of a novel species, sp. nov. The type strain is RC3 (=JCM 1508 =KCTC 5601).


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Andrews, K. T. & Patel, B. K. C.(1996).Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46, 265–269.[CrossRef] [Google Scholar]
  3. Bochner, B. R.(1989). Sleuthing out bacterial identities. Nature 339, 157–158.[CrossRef] [Google Scholar]
  4. Brock, T. D. & Freeze, H.(1969).Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98, 289–297. [Google Scholar]
  5. Chrisotomos, S., Patel, B. K. C., Dwivedi, P. P. & Denman, S. E.(1996).Caloramator indicus sp. nov., a new thermophilic anaerobic bacterium isolated from deep-seated nonvolcanically heated waters of an Indian artesian aquifer. Int J Syst Bacteriol 46, 497–501.[CrossRef] [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M. & Tiedje, J. M.(2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33, D294–D296. [Google Scholar]
  7. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  8. Greenberg, A. E., Clesceri, L. S. & Eaton, A. D.(1992). Estimation of bacterial density. In Standard Methods for the Examination of Water and Waste Water, pp. 49–50. Washington, DC: American Society for Microbiology.
  9. Habermahl, M. A.(1980). The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5, 9–38. [Google Scholar]
  10. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  11. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  12. Kanso, S. & Patel, B. K. C.(2003).Microvirga subterranea gen. nov., sp nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53, 401–406.[CrossRef] [Google Scholar]
  13. Kanso, S., Greene, A. C. & Patel, B. K. C.(2002).Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52, 869–874.[CrossRef] [Google Scholar]
  14. Kashefi, K., Holmes, D. E., Baross, J. A. & Lovley, D. R.(2003). Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69, 2985–2993.[CrossRef] [Google Scholar]
  15. Love, C. A., Patel, B. K. C., Nichols, P. D. & Stackebrandt, E.(1993).Desulfotomaculum australicum sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. Syst Appl Microbiol 16, 244–251.[CrossRef] [Google Scholar]
  16. Lovley, D. R.(1997). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev 20, 305–313.[CrossRef] [Google Scholar]
  17. Lovley, D. R. & Phillips, E. J. P.(1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689. [Google Scholar]
  18. Lovley, D. R. & Phillips, E. J. P.(1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480. [Google Scholar]
  19. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  20. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  21. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985a). A simple and efficient method for preparing and dispensing anaerobic media. Biotechnol Lett 7, 277–288.[CrossRef] [Google Scholar]
  22. Patel, B. K. C., Morgan, H. W. & Daniel, R. M.(1985b).Fervidobacterium nodosum gen. nov. sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef] [Google Scholar]
  23. Patel, B. K. C., Monk, C., Littleworth, H., Morgan, H. W. & Daniel, R. M.(1987).Clostridium fervidus sp. nov., a new chemorganotrophic acetogenic thermophile. Int J Syst Bacteriol 37, 123–126.[CrossRef] [Google Scholar]
  24. Ramamoorthy, S., Sass, H., Langner, H., Schumann, P., Kroppenstedt, R. M., Spring, S., Overmann, J. & Rosenzweig, R. F.(2006).Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56, 2729–2736.[CrossRef] [Google Scholar]
  25. Redburn, A. C. & Patel, B. K. C.(1994).Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115, 33–38.[CrossRef] [Google Scholar]
  26. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  27. Sørensen, J.(1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl Environ Microbiol 43, 319–324. [Google Scholar]
  28. Spanevello, M. D., Yamamoto, H. & Patel, B. K. C.(2002).Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter. Int J Syst Evol Microbiol 52, 795–800.[CrossRef] [Google Scholar]
  29. Spratt, H. G., Jr, Siekmann, E. C. & Hodson, R. E.(1994). Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar Coast Shelf Sci 38, 91–112.[CrossRef] [Google Scholar]
  30. Van de Peer, Y., Jansen, J., De Rijk, P. & De Wachter, P.(1997). Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25, 111–116.[CrossRef] [Google Scholar]
  31. Wolin, E. A., Wolin, M. J. & Wolfe, R. S.(1963). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886. [Google Scholar]
  32. Zavarzina, D. G., Tourova, T. P., Kuznetsov, B. B., Bonch-Osmolovskaya, E. A. & Slobodkin, A. I.(2002).Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52, 1737–1743.[CrossRef] [Google Scholar]
  33. Zeikus, J. G., Hegge, P. W. & Anderson, M. A.(1979).Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122, 41–48.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error