1887

Abstract

Two marine heterotrophic bacteria, A5K-61 and A5K-106, were isolated from marine animals. 16S rRNA gene sequence analysis data showed that the isolates were affiliated with the genus ; highest 16S rRNA gene sequence similarity values were found with DSM 13754 (97.5 and 98.1 %, respectively). DNA–DNA hybridization values of strains A5K-61 and A5K-106 with DSM 13754 (22.2–49.1 %) were clearly below 70 %, the generally accepted limit for species delineation. The isolates produced a brown diffusible pigment. The major respiratory quinone was Q-8 and the predominant cellular fatty acids were C 7 and C. Based on DNA–DNA hybridization data, some biochemical characteristics and 16S rRNA gene sequence comparison, the isolates represent two novel species of the genus , for which the names sp. nov. (type strain A5K-106 =MBIC08328 =NCIMB 14418 =NBRC 104231) and sp. nov. (type strain A5K-61 =MBIC08329 =NCIMB 14417 =NBRC 104232) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000539-0
2009-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/686.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000539-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Barrow, G. I. & Feltham, R. K. A.(1993).Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  3. Bowman, J. P. & McMeekin, T. A.(2005). Order X. Alteromonadales ord. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, p. 443. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  4. Deming, J. W. & Junge, K.(2005). Genus III. Colwellia Deming, Somers, Straube, Swartz and MacDonell 1988b, 328VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, pp. 447–454. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  7. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  8. Guindon, S. & Gascuel, O.(2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef] [Google Scholar]
  9. Hosoya, S. & Yokota, A.(2007).Loktanella atrilutea sp. nov., isolated from seawater in Japan. Int J Syst Evol Microbiol 57, 1966–1969.[CrossRef] [Google Scholar]
  10. Hosoya, S., Arunpairojana, V., Suwannachart, C., Kanjana-Opas, A. & Yokota, A.(2006).Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56, 2931–2935.[CrossRef] [Google Scholar]
  11. Ivanova, E. P., Flavier, A. & Christen, R.(2004). Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 54, 1773–1788.[CrossRef] [Google Scholar]
  12. Jean, W. D., Shieh, W. Y. & Liu, T. Y.(2006).Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas. Int J Syst Evol Microbiol 56, 1245–1250.[CrossRef] [Google Scholar]
  13. Katsuta, A., Adachi, K., Matsuda, S., Shizuri, Y. & Kasai, H.(2005).Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55, 1851–1855.[CrossRef] [Google Scholar]
  14. Macián, M. C., Ludwig, W., Schleifer, K. H., Garay, E. & Pujalte, M. J.(2001).Thalassomonas viridans gen. nov., sp. nov., a novel marine γ-proteobacterium. Int J Syst Evol Microbiol 51, 1283–1289. [Google Scholar]
  15. Saito, H. & Miura, K. I.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  16. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  17. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  18. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  19. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  20. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  22. Thompson, F. L., Barash, Y., Sawabe, T., Sharon, G., Swings, J. & Rosenberg, E.(2006).Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 56, 365–368.[CrossRef] [Google Scholar]
  23. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  24. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  25. Yi, H., Bae, K. S. & Chun, J.(2004).Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54, 377–380.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000539-0
Loading
/content/journal/ijsem/10.1099/ijs.0.000539-0
Loading

Data & Media loading...

Supplements

Maximum-parsimony and maximum-likelihood phylogenetic trees of the novel isolates, members of the genus and related members of the class based on 16S rRNA gene sequence analysis. [PDF](20 KB)

PDF

Colonies of sp. nov. A5K-61 (A) and sp. nov. A5K-106 (B) grown for 48 h at 30 °C on marine agar.

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error