1887

Abstract

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated 1ZS3-5, was isolated from rice rhizosphere in Hunan Province, PR China. The isolate was identified as a member of the genus on the basis of phenotypic characteristics and phylogenetic inference analysis. The 16S rRNA and gene (β-subunit of bacterial RNA polymerase) sequences were closely related to those of CGMCC 1.10966 with similarities of 97.2 % and 89.7 %, respectively. The DNA–DNA hybridization value between 1ZS3-5 and CGMCC 1.10966 was 33.4 %. The DNA G+C content of 1ZS3-5 was 47.5 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminophospholipid and unknown phospholipid. The predominant respiratory quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was -diaminopimelic acid. The major cellular fatty acids were anteiso-C, iso-C and iso-C. Based on these results, 1ZS3-5 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1ZS3-5 ( = ACCC 19782 = DSM 29322).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000376
2015-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3053.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000376&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F.G., Collins M.D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baik K.S., Choe H.N., Park S.C., Kim E.M., Seong C.N.. ( 2011;). Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 61: 2763–2768 [CrossRef] [PubMed].
    [Google Scholar]
  3. Dahllöf I., Baillie H., Kjelleberg S.. ( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66: 3376–3380 [CrossRef] [PubMed].
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Huss V.A.R., Festl H., Schleifer K.H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  8. Jin H.J., Lv J., Chen S.F.. ( 2011a;). Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica. Int J Syst Evol Microbiol 61: 767–771 [CrossRef] [PubMed].
    [Google Scholar]
  9. Jin H.J., Zhou Y.G., Liu H.C., Chen S.F.. ( 2011b;). Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens. Int J Syst Evol Microbiol 61: 1350–1355 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.J., Tindall B.J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56: 781–786 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim K.K., Lee K.C., Yu H., Ryoo S., Park Y., Lee J.S.. ( 2010;). Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol 60: 2371–2376 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ko K.S., Kim Y.S., Lee M.Y., Shin S.Y., Jung D.S., Peck K.R., Song J.H.. ( 2008;). Paenibacillus konsidensis sp. nov., isolated from a patient. Int J Syst Evol Microbiol 58: 2164–2168 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kong B.H., Liu Q.F., Liu M., Liu Y., Liu L., Li C.L., Yu R., Li Y.H.. ( 2013;). Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 63: 1037–1044 [CrossRef] [PubMed].
    [Google Scholar]
  15. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  16. Lechevalier M.P., Lechevalier H.A.. ( 1980;). The chemotaxonomy of actinomycetes. . In Actinomycete Taxonomy (Special Publication no. 6), pp. 227–291. Edited by Dietz A., Thayer D. W.. Arlington, VA: Society for Industrial Microbiology;.
    [Google Scholar]
  17. Lee J.C., Kim C.J., Yoon K.H.. ( 2011;). Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 49: 617–621 [CrossRef] [PubMed].
    [Google Scholar]
  18. Liu Y., Liu L., Qiu F., Schumann P., Shi Y., Zou Y., Zhang X., Song W.. ( 2010;). Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60: 1266–1270 [CrossRef] [PubMed].
    [Google Scholar]
  19. Logan N.A., Berge O., Bishop A.H., Busse H.J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  20. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  21. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  22. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  23. Moon J.C., Jung Y.J., Jung J.H., Jung H.S., Cheong Y.R., Jeon C.O., Lee K.O., Lee S.Y.. ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 2753–2757 [CrossRef] [PubMed].
    [Google Scholar]
  24. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics New York: Oxford University Press;.
    [Google Scholar]
  25. Rivas R., Mateos P.F., Martínez-Molina E., Velázquez E.. ( 2005;). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55: 743–746 [CrossRef] [PubMed].
    [Google Scholar]
  26. Roux V., Fenner L., Raoult D.. ( 2008;). Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 58: 682–687 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saha P., Krishnamurthi S., Bhattacharya A., Sharma R., Chakrabarti T.. ( 2010;). Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 60: 422–428 [CrossRef] [PubMed].
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  29. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;.
  30. Scheldeman P., Goossens K., Rodriguez-Diaz M., Pil A., Goris J., Herman L., De Vos P., Logan N.A., Heyndrickx M.. ( 2004;). Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54: 885–891 [CrossRef] [PubMed].
    [Google Scholar]
  31. Shida O., Takagi H., Kadowaki K., Nakamura L.K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  32. Šmerda J., Sedlácek I., Pácová Z., Durnová E., Smísková A., Havel L.. ( 2005;). Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 55: 2351–2354 [CrossRef] [PubMed].
    [Google Scholar]
  33. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  35. Tang Q.Y., Yang N., Wang J., Xie Y.Q., Ren B., Zhou Y.G., Gu M.Y., Mao J., Li W.J., other authors. ( 2011;). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 61: 2167–2172 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  37. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M.H., Caviedes M.A., Mars M., Velázquez E., Rodriguez-Llorente I.D.. ( 2010;). Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. Int J Syst Evol Microbiol 60: 2182–2186 [CrossRef] [PubMed].
    [Google Scholar]
  38. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37: 463–464.
    [Google Scholar]
  39. Wu X., Fang H., Qian C., Wen Y., Shen X., Li O., Gao H.. ( 2011;). Paenibacillus tianmuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61: 1133–1137 [CrossRef] [PubMed].
    [Google Scholar]
  40. Wu Y.F., Wu Q.L., Liu S.J.. ( 2013;). Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol 63: 3652–3658 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000376
Loading
/content/journal/ijsem/10.1099/ijs.0.000376
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error