1887

Abstract

An extremely halophilic archaeon was isolated from a water sample of Isla Bacuta saltern in Huelva, Spain. Strain ASP54 is a novel red-pigmented, motile, rod-shaped, Gram-stain-negative and strictly aerobic haloarchaeon. Strain ASP54 grew in media containing 15–30  % (w/v) salts and optimally with 25  % (w/v) salts. It grew between pH 5.0 and 9.0 (optimally at pH 7.5) and at 20–40 °C (optimally at 37 °C). Phylogenetic analysis based on multi-locus sequence analysis (MLSA) and the comparison of 16S rRNA gene sequences revealed that strain ASP54 is most closely related to the genus . The closest relatives were EB27 (92.1  % 16S rRNA gene sequence similarity), TNN28 (92.1  %), and D108 (92.0  %). The polar lipid pattern of strain ASP54 consisted of biphosphatidylglycerol, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and a minor-phospholipid. The predominant respiratory quinone was menaquinone-8 (MK-8) (83  %), and a minor amount of MK-8(VIII-H) (17  %) was also detected. The G+C content of the genomic DNA of this strain was 63.1 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data presented in this study, strain ASP54 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ASP54 ( = CECT 8749 = IBRC-M 10946 = JCM 30072).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000370
2015-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3016.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000370&mimeType=html&fmt=ahah

References

  1. Amoozegar M.A. , Makhdoumi-Kakhki A. , Mehrshad M. , Fazeli S.A. , Spröer C. , Ventosa A. . ( 2014;). Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis. Int J Syst Evol Microbiol 64: 940–944.[CrossRef]
    [Google Scholar]
  2. Angelini R. , Corral P. , Lopalco P. , Ventosa A. , Corcelli A. . ( 2012;). Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. Biochim Biophys Acta 1818: 1365–1373 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barrow G. I. , Feltham R. K. A. . ), ( 2003;). Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.., Cambridge: Cambridge University Press;.
    [Google Scholar]
  4. Bauer A.W. , Kirby W.M.M. , Sherris J.C. , Turck M. . ( 1966;). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493–496 [PubMed].
    [Google Scholar]
  5. Boucher Y. , Douady C.J. , Sharma A.K. , Kamekura M. , Doolittle W.F. . ( 2004;). Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186: 3980–3990 [CrossRef] [PubMed].
    [Google Scholar]
  6. Clarke P.H. . ( 1953;). Hydrogen sulphide production by bacteria. J Gen Microbiol 8: 397–407 [CrossRef] [PubMed].
    [Google Scholar]
  7. Corcelli A. , Lobasso S. . ( 2006;). Characterization of lipids of halophilic archaea. . In Methods in Microbiology, Extremophiles, pp. 585–613. Edited by Rainey F. A. , Oren A. . Amsterdam: Elsevier/Academic;.
    [Google Scholar]
  8. Corral P. , Gutiérrez M.C. , Castillo A.M. , Domínguez M. , Lopalco P. , Corcelli A. , Ventosa A. . ( 2013;). Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 63: 104–108 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cui H.L. , Yang X. , Gao X. , Xu X.W. . ( 2011;). Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. Int J Syst Evol Microbiol 61: 2682–2689.[CrossRef]
    [Google Scholar]
  10. DeLong E.F. . ( 1992;). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89: 5685–5689 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dyall-Smith M. . ( 2009;). The halohandbook: protocols for haloarchaeal genetics v.7.2, pp. 118 http://www.haloarchaea.com/resources/halohandbook/.
    [Google Scholar]
  12. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  13. Fernández A.B. , Ghai R. , Martin-Cuadrado A.B. , Sánchez-Porro C. , Rodriguez-Valera F. , Ventosa A. . ( 2014a;). Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88: 623–635 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fernández A.B. , Vera-Gargallo B. , Sánchez-Porro C. , Ghai R. , Papke R.T. , Rodriguez-Valera F. , Ventosa A. . ( 2014b;). Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5: 196 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  16. Fullmer M.S. , Soucy S.M. , Swithers K.S. , Makkay A.M. , Wheeler R. , Ventosa A. , Gogarten J.P. , Papke R.T. . ( 2014;). Population and genomic analysis of the genus Halorubrum . Front Microbiol 5: 140 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . ), ( 1994;). Methods for General and Molecular Bacteriology., Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  18. Ghai R. , Pašić L. , Fernández A.B. , Martin-Cuadrado A.B. , Mizuno C.M. , McMahon K.D. , Papke R.T. , Stepanauskas R. , Rodriguez-Brito B. , other authors . ( 2011;). New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1: 135 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  20. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y.S. , Lee J.-H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. , other authors . ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  22. Makhdoumi-Kakhki A. , Amoozegar M.A. , Ventosa A. . ( 2012;). Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. Int J Syst Evol Microbiol 62: 1331–1336 [CrossRef] [PubMed].
    [Google Scholar]
  23. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  24. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  25. Nelson-Sathi S. , Dagan T. , Landan G. , Janssen A. , Steel M. , McInerney J.O. , Deppenmeier U. , Martin W.F. . ( 2012;). Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc Natl Acad Sci U S A 109: 20537–20542 [CrossRef] [PubMed].
    [Google Scholar]
  26. Oren A. , Ventosa A. . ( 2013;). Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae: minutes of the joint open meeting, 24 June 2013, Storrs, Connecticut, USA. Int J Syst Evol Microbiol 63: 3540–3544 [CrossRef] [PubMed].
    [Google Scholar]
  27. Oren A. , Ventosa A. , Grant W.D. . ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47: 233–238 [CrossRef].
    [Google Scholar]
  28. Owen R.J. , Hill L.R. . ( 1979;). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), pp. 277–296. Edited by Skinner F. A. , Lovelock D. W. . , 2nd edn.., London: Academic Press;.
    [Google Scholar]
  29. Papke R.T. , White E. , Reddy P. , Weigel G. , Kamekura M. , Minegishi H. , Usami R. , Ventosa A. . ( 2011;). A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales . Int J Syst Evol Microbiol 61: 2984–2995 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ram Mohan N. , Fullmer M.S. , Makkay A.M. , Wheeler R. , Ventosa A. , Naor A. , Gogarten J.P. , Papke R.T. . ( 2014;). Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations. Front Microbiol 5: 143 [CrossRef] [PubMed].
    [Google Scholar]
  31. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  32. Sambrook J. , Russell D.W. . ( 2001;). Molecular Cloning: a Laboratory Manual , 3rd edn.., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  33. Scorpio R. . ( 2000;). Fundamentals of Acids. . In Bases, Buffers and Their Application to Biochemical Systems., Iowa: Kendall Hunt Publishing Company;.
    [Google Scholar]
  34. Subov N.N. . ( 1931;). Oceanographical Tables., Moscow: USSR Oceanographic Institute Hydrometeorological Commission;.
    [Google Scholar]
  35. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  36. Ventosa A. , Quesada E. , Rodríguez-Valera F. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128: 1959–1968.
    [Google Scholar]
  37. Williams D. , Gogarten J.P. , Papke R.T. . ( 2012;). Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol Evol 4: 1223–1244 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000370
Loading
/content/journal/ijsem/10.1099/ijs.0.000370
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error