1887

Abstract

For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, gen. nov., by analysing seven filamentous strains that are morphologically ‘intermediate’ between gas-vacuolated taxa and . Furthermore, we characterize two novel species: sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000369
2015-09-01
2021-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2993.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000369&mimeType=html&fmt=ahah

References

  1. Barbiéro L., Queiroz-Neto J.P., Ciornei G., Sakamoto A.Y., Capellari B., Fernandes E., Valles V. ( 2002;). Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22 528540 [CrossRef].
    [Google Scholar]
  2. Birnboim H.C., Doly J. ( 1979;). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7 15131523 [CrossRef] [PubMed] .
    [Google Scholar]
  3. Bohunická M., Johansen J.R., Fučíková K. ( 2011;). Tapinothrix clintonii sp. nov. (Pseudanabaenaceae, Cyanobacteria), a new species at the nexus of five genera. Fottea 11 127140 [CrossRef].
    [Google Scholar]
  4. Boyer S.L., Flechtner V.R., Johansen J.R. ( 2001;). Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18 10571069 [CrossRef] [PubMed] .
    [Google Scholar]
  5. Boyer S.L., Johansen J.R., Flechtner V.R. ( 2002;). Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S–23S ITS region. J Phycol 38 12221235 [CrossRef].
    [Google Scholar]
  6. Capone D.G., Zehr J.P., Paerl H.W., Bergman B., Carpenter E.J. ( 1997;). Trichodesmium, a globally significant marine cyanobacterium. Science 276 12211229 [CrossRef].
    [Google Scholar]
  7. Casamatta D.A., Johansen J.R., Vis M.L., Broadwater S.T. ( 2005;). Molecular and morphological characterization often polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41 421438 [CrossRef].
    [Google Scholar]
  8. Chatchawan T., Komárek J., Strunecký O., Šmarda J., Peerapornpisal Y. ( 2012;). Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogam Algol 33 4159 [CrossRef].
    [Google Scholar]
  9. Darriba D., Taboada G.L., Doallo R., Posada D. ( 2012;). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9 772 [CrossRef] [PubMed] .
    [Google Scholar]
  10. Ernst A., Becker S., Wollenzien U.I.A., Postius C. ( 2003;). Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149 217228 [CrossRef] [PubMed] .
    [Google Scholar]
  11. Ewing B., Green P. ( 1998;). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8 186194 [PubMed]. [CrossRef]
    [Google Scholar]
  12. Ewing B., Hillier L., Wendl M.C., Green P. ( 1998;). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8 175185 [CrossRef] [PubMed] .
    [Google Scholar]
  13. Fox G.E., Wisotzkey J.D., Jurtshuk P. Jr ( 1992;). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42 166170 [CrossRef] [PubMed] .
    [Google Scholar]
  14. Gordon D., Abajian C., Green P. ( 1998;). Consed: a graphical tool for sequence finishing. Genome Res 8 195202 [CrossRef] [PubMed] .
    [Google Scholar]
  15. Hoffmann L., Komárek J., Kaštovský J. ( 2005;). System of cyanoprokaryotes (Cyanobacteria) - state in 2004. Algol Stud 117 95115 [CrossRef].
    [Google Scholar]
  16. Jacinavicius F.R., Gama-Junior W.A., Azevedo M.T.P., Sant'Anna C.L. ( 2012). Manual para Cultivo de Cianobactérias., São Paulo: Secretaria do Meio Ambiente do Estado de São Paulo, Instituto de Botânica, Núcleo de Pesquisa em Ficologia; (in Portuguese) .
    [Google Scholar]
  17. Johansen J.R., Kovacik L., Casamatta D.A., Fučiková K., Kaštovský J. ( 2011;). Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92 283302 [CrossRef].
    [Google Scholar]
  18. Kling H.J., Laughinghouse H.D. IV, Šmarda J., Komárek J., Acreman J., Bruun K., Watson S.B., Chen F. ( 2012;). A new red colonial Pseudanabaena (Cyanoprokaryota, Oscillatoriales) from North American large lakes. Fottea 12 327339 [CrossRef].
    [Google Scholar]
  19. Komárek J. ( 2005;). The modern classification of Cyanoprokaryotes (Cyanobacteria). Oceanol Hydrobiol Stud 34 517.
    [Google Scholar]
  20. Komárek J. ( 2006;). Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21 349375 [CrossRef].
    [Google Scholar]
  21. Komárek J., Anagnostidis K. ( 2005;). In Cyanoprokaryota 2. Teil Oscillatoriales (Süsswasserflora von Mitteleuropa, vol. 19/2). Edited by. ( Büdel B., Krienitz L., Gärtner G., Schagerl M. München: Elsevier Spektrum Akademischer; (in German).
  22. Komárek J., Kaštovský J., Ventura S., Turicchia S., Šmarda J. ( 2009;). The cyanobacterial genus Phormidesmis . Algol Stud 129 4159 [CrossRef].
    [Google Scholar]
  23. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;.
    [Google Scholar]
  24. Lipscomb D., Platnick N., Wheeler Q. ( 2003;). The intellectual content of taxonomy. A comment on DNA taxonomy. Trends Ecol Evol 18 6566 [CrossRef].
    [Google Scholar]
  25. Malone C.F.S., Santos K.R.S., Sant'Anna C.L. ( 2012;). Algas e cianobactérias de ambientes extremos do Pantanal brasileiro. Oecol Aust 16 745755 (in Portuguese) . [CrossRef]
    [Google Scholar]
  26. Marquardt J., Palinska K.A. ( 2007;). Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 187 397413 [CrossRef] [PubMed] .
    [Google Scholar]
  27. Mlouka A., Comte K., Castets A.M., Bouchier C., Tandeau de Marsac N. ( 2004;). The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 186 23552365 [CrossRef] [PubMed] .
    [Google Scholar]
  28. Nadeau T.L., Milbrandt E.C., Castenholz R.W. ( 2001;). Evolutionary relationships of cultivated Antarctic oscillatorians (Cyanobacteria). J Phycol 37 650654 [CrossRef].
    [Google Scholar]
  29. Neilan B.A., Jacobs D., Del Dot T., Blackall L.L., Hawkins P.R., Cox P.T., Goodman A.E. ( 1997;). rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis . Int J Syst Bacteriol 47 693697 [CrossRef] [PubMed] .
    [Google Scholar]
  30. Palinska K.A., Liesack W., Rhiel E., Krumbein W.E. ( 1996;). Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol 166 224233 [CrossRef] [PubMed] .
    [Google Scholar]
  31. Perkerson R.B. III, Johansen J., Kovácik L., Brand J., Kaštovský J., Casamatta D. ( 2011;). A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J Phycol 47 13971412 [CrossRef].
    [Google Scholar]
  32. Rantala A., Fewer D.P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T., Sivonen K. ( 2004;). Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101 568573 [CrossRef] [PubMed] .
    [Google Scholar]
  33. Rejmánková E., Komárek J., Komárková J. ( 2004;). Cyanobacteria – a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Divers Distrib 10 189199 [CrossRef].
    [Google Scholar]
  34. Rippka R. ( 1988;). Isolation and purification of cyanobacteria. Methods Enzymol 167 327 [PubMed]. [CrossRef]
    [Google Scholar]
  35. Ronquist F., Huelsenbeck J.P. ( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 15721574 [CrossRef] [PubMed] .
    [Google Scholar]
  36. Rudi K., Skulberg O.M., Jakobsen K.S. ( 1998;). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180 34533461 [PubMed].
    [Google Scholar]
  37. Sato N., Katsumata Y., Sato K., Tajima N. ( 2014;). Cellular dynamics drives the emergence of supracellular structure in the cyanobacterium, Phormidium sp. KS. Life (Basel) 4 819836 [PubMed].
    [Google Scholar]
  38. Schmidt E.C., Scariot L.A., Rover T., Bouzon Z.L. ( 2009;). Changes in ultrastructure and histochemistry of two red macroalgae strains of Kappaphycus alvarezii (Rhodophyta, Gigartinales), as a consequence of ultraviolet B radiation exposure. Micron 40 860869 [CrossRef] [PubMed] .
    [Google Scholar]
  39. Sciuto K., Andreoli C., Rascio N., La Rocca N., Moro I. ( 2012;). Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 28 357374 [CrossRef].
    [Google Scholar]
  40. Siegesmund M.A., Johansen J.R., Karsten U., Friedl T. ( 2008;). Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44 15721585 [CrossRef].
    [Google Scholar]
  41. Spurr A.R. ( 1969;). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26 3143 [CrossRef] [PubMed] .
    [Google Scholar]
  42. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G. ( 1971;). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35 171205 [PubMed].
    [Google Scholar]
  43. Strunecký O., Elster J., Komárek J. ( 2011;). Taxonomic revision of the freshwater cyanobacterium “Phormidium murrayi” = Wilmottia murrayi . Fottea 11 5771 [CrossRef].
    [Google Scholar]
  44. Suda S., Watanabe M.M., Otsuka S., Mahakahant A., Yongmanitchai W., Nopartnaraporn N., Liu Y., Day J.G. ( 2002;). Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52 15771595 [CrossRef] [PubMed] .
    [Google Scholar]
  45. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [CrossRef] [PubMed] .
    [Google Scholar]
  46. Taton A., Grubisic S., Brambilla E., De Wit R., Wilmotte A. ( 2003;). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69 51575169 [CrossRef] [PubMed] .
    [Google Scholar]
  47. Tautz D., Arctander P., Minelli A., Thomas R.H., Vogler A.P. ( 2003;). A plea for DNA taxonomy. Trends Ecol Evol 18 7074 [CrossRef].
    [Google Scholar]
  48. Thompson J.D., Higgins D.G., Gibson T.J. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 46734680 [CrossRef] [PubMed] .
    [Google Scholar]
  49. Thu N.K., Tanabe Y., Yoshida M., Matsuura H., Watanabe M.M. ( 2012;). Aerosakkonema funiforme gen. et sp. nov. (Oscillatoriales), a new gas-vacuolated oscillatorioid cyanobacterium isolated from a mesotrophic reservoir. Phycologia 51 672683 [CrossRef].
    [Google Scholar]
  50. Werner V.R., Laughinghouse H.D. IV ( 2009;). Bloom-forming and other planktonic Anabaena (Cyanobacteria) morphospecies with twisted trichomes from Rio Grande do Sul State, Brazil. Nova Hedwigia 89 1747 [CrossRef].
    [Google Scholar]
  51. Whitton B.A. ( 1992;). Diversity, ecology and taxonomy of the cyanobacteria. [CrossRef] In Photosynthetic Prokaryotes, pp. 151. Edited by Mann N. H., Carr N. G. New York: Plenum;.
    [Google Scholar]
  52. Wilmotte A. ( 1994;). Molecular evolution and taxonomy of the cyanobacteria. [CrossRef] In The Molecular Biology of Cyanobacteria, pp. 125. Edited by Bryant D. A. Boston: Kluwer Academic;.
    [Google Scholar]
  53. Zuker M. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31 34063415 [CrossRef] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000369
Loading
/content/journal/ijsem/10.1099/ijs.0.000369
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error