1887

Abstract

Strains Y-12 and Y-47 were isolated from mountain forest soil and strain WR43 was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10–55 °C (optimal growth at 28–30 °C), at pH 3.0–8.0 (optimal growth at pH 6.0) and in the presence of 0–4.0  % (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus showing the closest phylogenetic similarity to JPY461 (97.2–97.7  %); the similarity between the three sequences ranged from 98.3 to 98.7  %. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes and . The predominant ubiquinone was Q-8, the major fatty acids were C and C cyclo and the DNA G+C content of the novel isolates was 61.6–64.4 mol%. DNA–DNA relatedness among the three strains and the type strains of the closest species of the genus was less than 50  %. On the basis of 16S rRNA, and gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus , for which the names Burkholderia sp. nov. (type strain Y-12 = KACC 17601 = NBRC 109933 = NCAIM B 02543), Burkholderia sp. nov. (type strain Y-47 = KACC 17602 = NBRC 109934 = NCAIM B 02539) and Burkholderia sp. nov. (type strain WR43 = KACC 17603 = NBRC 109935 = NCAIM B 02541) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000368
2015-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2986.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000368&mimeType=html&fmt=ahah

References

  1. Aizawa T., Nguyen B.V., Vijarnsorn P., Nakajima M., Sunairi M.. ( 2010;). Burkholderia acidipaludis sp. nov., aluminium-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int J Syst Evol Microbiol 60: 2036–2041 [CrossRef] [PubMed].
    [Google Scholar]
  2. Collins M.D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  3. De Meyer S.E., Cnockaert M., Ardley J.K., Maker G., Yates R., Howieson J.G., Vandamme P.. ( 2013;). Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 63: 3950–3957 [CrossRef] [PubMed].
    [Google Scholar]
  4. DeLong E.F.. ( 1992;). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89: 5685–5689 [CrossRef] [PubMed].
    [Google Scholar]
  5. Draghi W.O., Peeters C., Cnockaert M., Snauwaert C., Wall L.G., Zorreguieta A., Vandamme P.. ( 2014;). Burkholderia cordobensis sp. nov., from agricultural soils. Int J Syst Evol Microbiol 64: 2003–2008 [CrossRef] [PubMed].
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  10. Gillis M., Tran V.V., Bardin R., Goor M., Hebbar P., Willems A., Segers P., Kersters K., Heulin T., Fernandez M.P.. ( 1995;). Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45: 274–289 [CrossRef].
    [Google Scholar]
  11. Kang S.R., Srinivasan S., Lee S.S.. ( 2014;). Burkholderia eburnea sp. nov., isolated from peat soil. Int J Syst Evol Microbiol 64: 1108–1115 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kim H.-B., Park M.-J., Yang H.-C., An D.-S., Jin H.-Z., Yang D.-C.. ( 2006;). Burkholderia ginsengisoli sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56: 2529–2533 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  15. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lee C.M., Weon H.Y., Yoon S.H., Kim S.J., Koo B.S., Kwon S.W.. ( 2012;). Burkholderia denitrificans sp. nov., isolated from the soil of Dokdo Island, Korea. J Microbiol 50: 855–859 [CrossRef] [PubMed].
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  18. Murray R.G.E., Doetsch R.N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  19. Parte A.C.. ( 2015;). Genus Burkholderia. In List of Prokaryotic Names with Standing in Nomenclature http://www.bacterio.net/burkholderia.html.
  20. Saito H., Miura K.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72: 619–629 [CrossRef] [PubMed].
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  22. Sheu S.Y., Chou J.H., Bontemps C., Elliott G.N., Gross E., dos Reis Junior F.B., Melkonian R., Moulin L., James E.K., other authors. ( 2013;). Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 63: 435–441 [CrossRef] [PubMed].
    [Google Scholar]
  23. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  24. Spilker T., Baldwin A., Bumford A., Dowson C.G., Mahenthiralingam E., LiPuma J.J.. ( 2009;). Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 47: 2607–2610 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  27. Vandamme P., Goris J., Chen W.M., de Vos P., Willems A.. ( 2002;). Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25: 507–512 [CrossRef] [PubMed].
    [Google Scholar]
  28. Vandamme P., De Brandt E., Houf K., Salles J.F., van Elsas J.D., Spilker T., Lipuma J.J.. ( 2013;). Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int J Syst Evol Microbiol 63: 4707–4718 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  30. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34: 99–119 [CrossRef] [PubMed].
    [Google Scholar]
  31. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M.. ( 1992;). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36: 1251–1275 [CrossRef] [PubMed].
    [Google Scholar]
  32. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I.. ( 1999;). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 43: 339–349 [CrossRef] [PubMed].
    [Google Scholar]
  33. Yoo S.H., Kim B.Y., Weon H.Y., Kwon S.W., Go S.J., Stackebrandt E.. ( 2007;). Burkholderia soli sp. nov., isolated from soil cultivated with Korean ginseng. Int J Syst Evol Microbiol 57: 122–125 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000368
Loading
/content/journal/ijsem/10.1099/ijs.0.000368
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error