1887

Abstract

A Gram-stain-negative, strictly aerobic, motile, short-rod-shaped bacterium, designated strain THG-SQA8, was isolated from rhizosphere soil of rose in PR China. Strain THG-SQA8 was closely related to members of the genus , showed the highest sequence similarities with KACC 14105 (98.0 %) and KACC 14526 (97.4 %). DNA–DNA hybridization showed values of 35.2 ± 0.9 % and 8.8 ± 0.3 % DNA reassociation with KACC 14105 and KACC 14526, respectively. Chemotaxonomic data revealed that strain THG-SQA8 possesses menaquinone-7 as the only respiratory quinone, and summed feature 3 (Cω7 and/or Cω6), iso-C and C as the major fatty acids. The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 40.7 mol%. These data corroborated the affiliation of strain THG-SQA8 to the genus . Thus, the isolate represents a novel species, for which the name sp. nov. is proposed, with THG-SQA8 as the type strain ( = CCTCC AB 2014317 = KCTC 42503).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000361
2015-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2949.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000361&mimeType=html&fmt=ahah

References

  1. Ahmed I. , Ehsan M. , Sin Y. , Paek J. , Khalid N. , Hayat R. , Chang Y.H. . ( 2014;). Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo . Antonie van Leeuwenhoek 105: 325–333 [CrossRef] [PubMed].
    [Google Scholar]
  2. Albert R.A. , Waas N.E. , Pavlons S.C. , Pearson J.L. , Ketelboeter L. , Rosselló-Móra R. , Busse H.J. . ( 2013;). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 63: 952–958 [CrossRef] [PubMed].
    [Google Scholar]
  3. Choi H.A. , Lee S.S. . ( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii . Int J Syst Evol Microbiol 62: 2559–2564 [CrossRef] [PubMed].
    [Google Scholar]
  4. Collins M.D. , Jones D. . ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  5. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  6. Farfán M. , Montes M.J. , Marqués A.M. . ( 2014;). Reclassification of Sphingobacterium antarcticum Shivaji et al. 1992 as Pedobacter antarcticus comb. nov. and Pedobacter piscium (Takeuchi and Yokota 1993) Steyn et al. 1998 as a later heterotypic synonym of Pedobacter antarcticus . Int J Syst Evol Microbiol 64: 863–868 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J. . ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Feng H. , Zeng Y. , Huang Y. . ( 2014;). Sphingobacterium paludis sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64: 3453–3458 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  11. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  12. Hiraishi A. , Ueda Y. , Ishihara J. , Mori T. . ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42: 457–469.[CrossRef]
    [Google Scholar]
  13. Holmes B. , Weaver R.E. , Steigerwalt A.G. , Brenner D.J. . ( 1988;). A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int J Syst Evol Microbiol 38: 348–353.
    [Google Scholar]
  14. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [PubMed].[CrossRef]
    [Google Scholar]
  15. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution., Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  16. Kumar S. , Nei M. , Dudley J. , Tamura K. . ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299–306 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lee D.H. , Hur J.S. , Kahng H.Y. . ( 2013;). Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense . Int J Syst Evol Microbiol 63: 755–760 [PubMed].[CrossRef]
    [Google Scholar]
  18. Liu R. , Liu H. , Zhang C.X. , Yang S.Y. , Liu X.H. , Zhang K.Y. , Lai R. . ( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 58: 1458–1462 [CrossRef] [PubMed].
    [Google Scholar]
  19. Marqués A.M. , Burgos-Díaz C. , Aranda F.J. , Teruel J.A. , Manresa À. , Ortiz A. , Farfán M. . ( 2012;). Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. Int J Syst Evol Microbiol 62: 3036–3041 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mehnaz S. , Weselowski B. , Lazarovits G. . ( 2007;). Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30: 519–524 [PubMed].[CrossRef]
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  22. Minnikin D.E. , Patel P.V. , Alshamaony L. , Goodfellow M. . ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  23. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An intergrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  24. Moore D.D. , Dowhan D. . ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . New York: Wiley;.
    [Google Scholar]
  25. Peng S. , Hong D.D. , Xin Y.B. , Jun L.M. , Hong W.G. . ( 2014;). Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 64: 3862–3866 [PubMed].[CrossRef]
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  27. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  28. Schmidt V.S. , Wenning M. , Scherer S. . ( 2012;). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 62: 1506–1511 [PubMed].[CrossRef]
    [Google Scholar]
  29. Shivaji S. , Ray M.K. , Shyamala Rao N. , Saisree L. , Jagannadham M.V. , Seshu Kumar G. , Reddy G.S.N. , Bhargava P.M. . ( 1992;). Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42: 102–106 [CrossRef].
    [Google Scholar]
  30. Son H.M. , Yang J.E. , Kook M.C. , Shin H.S. , Park S.Y. , Lee D.G. , Yi T.H. . ( 2013;). Sphingobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J Gen Appl Microbiol 59: 345–352 [CrossRef] [PubMed].
    [Google Scholar]
  31. Stackebrandt E. , Goebel B.M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44: 846–849.
    [Google Scholar]
  32. Steyn P.L. , Segers P. , Vancanneyt M. , Sandra P. , Kersters K. , Joubert J.J. . ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48: 165–177 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sun L.N. , Zhang J. , Chen Q. , He J. , Li S.P. . ( 2013;). Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 63: 2260–2264 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tamura K. , Stecher G. , Peterson D. , Filipski A , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.[CrossRef]
    [Google Scholar]
  35. Takeuchi M. , Yokota A. . ( 1992;). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38: 465–482 [CrossRef].
    [Google Scholar]
  36. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tindall B.J. . ( 1990;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  38. Wauters G. , Janssens M. , De Baere T. , Vaneechoutte M. , Deschaght P. . ( 2012;). Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium . Int J Syst Evol Microbiol 62: 2598–2601 [CrossRef] [PubMed].
    [Google Scholar]
  39. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  40. Yabuuchi E. , Kaneko T. , Yano I. , Moss C.W. , Miyoshi N. . ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov. glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33: 580–598 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000361
Loading
/content/journal/ijsem/10.1099/ijs.0.000361
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error