1887

Abstract

We isolated a strain coded Esc2Am during a study focused on the microbial diversity of adult specimens of the bark beetle . Its 16S rRNA gene sequence had 99.4 % similarity with respect to its closest relative, IH5. The analysis of partial sequences of the housekeeping genes , and confirmed that strain Esc2Am formed a cluster with IH5 clearly separated from the remaining species of the genus . Strain Esc2Am had polar flagella and could grow at temperatures from 4 °C to 30 °C. The respiratory quinone was Q9 and the main fatty acids were C, Cω7 and/or Cω6 in summed feature 8 and Cω7 and/or Cω6 in summed feature 3. DNA–DNA hybridization results showed 51 % relatedness with respect to IH5. Oxidase, catalase and urease-positive, the arginine dihydrolase system was present but nitrate reduction and β-galactosidase production were negative. Aesculin hydrolysis was positive. Based on the results from the genotypic, phenotypic and chemotaxonomic analyses, we propose the classification of strain Esc2Am as representing a novel species of the genus , for which we propose the name sp. nov. The type strain is Esc2Am ( = LMG 28558 = CECT 8695).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000344
2015-09-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2852.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000344&mimeType=html&fmt=ahah

References

  1. Ait Tayeb L., Ageron E., Grimont F., Grimont P.A.D. ( 2005;). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156 763773 [CrossRef] [PubMed] .
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. ( 1990;). Basic local alignment search tool. J Mol Biol 215 403410 [CrossRef] [PubMed] .
    [Google Scholar]
  3. Alvarez C., Kukutla P., Jiang J., Yu W., Xu J. ( 2012;). Draft genome sequence of Pseudomonas sp. strain Ag1, isolated from the midgut of the malaria mosquito Anopheles gambiae . J Bacteriol 194 5449 [CrossRef] [PubMed] .
    [Google Scholar]
  4. Bansal R., Hulbert S.H., Reese J.C., Whitworth R.J., Stuart J.J., Chen M.S. ( 2014;). Pyrosequencing reveals the predominance of pseudomonadaceae in gut microbiome of a gall midge. Pathogens 3 459472 [CrossRef] [PubMed] .
    [Google Scholar]
  5. Clark L.L., Dajcs J.J., McLean C.H., Bartell J.G., Stroman D.W. ( 2006;). Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol 56 709714 [CrossRef] [PubMed] .
    [Google Scholar]
  6. Doetsch R.N. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 2133. Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [CrossRef].
    [Google Scholar]
  8. García-Fraile P., Chudíčková M., Benada O., Pikula J., Kolarˇík M. ( 2015;). Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves. Int J Syst Evol Microbiol 65 9094 [CrossRef] [PubMed] .
    [Google Scholar]
  9. Hu X., Yu J., Wang C., Chen H. ( 2014;). Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5 455465 [CrossRef].
    [Google Scholar]
  10. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed] .
    [Google Scholar]
  11. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120 [CrossRef] [PubMed] .
    [Google Scholar]
  12. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23 29472948 [CrossRef] [PubMed] .
    [Google Scholar]
  13. Maleki-Ravasan N., Oshaghi M.A., Hajikhani S., Saeidi Z., Akhavan A.A., Gerami-Shoar M., Shirazi M.H., Yakhchali B., Rassi Y., Afshar D. ( 2014;). Aerobic microbial community of insectary population of Phlebotomus papatasi . J Arthropod Borne Dis 8 6981 [PubMed].
    [Google Scholar]
  14. Mandel M., Marmur J. ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B 195206. [CrossRef]
    [Google Scholar]
  15. Mateos P.F., Jimenez-Zurdo J.I., Chen J., Squartini A.S., Haack S.K., Martinez-Molina E., Hubbell D.H., Dazzo F.B. ( 1992;). Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58 18161822 [PubMed].
    [Google Scholar]
  16. Moore E.D.B., Tindall B.J., Martins dos Santos V.A.P., Pieper D.H., Ramos J.L., Palleroni N.J. ( 2006;). Nonmedical: Pseudomonas . . In The Prokaryotes, pp. 646703. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; [CrossRef].
    [Google Scholar]
  17. Morales-Jiménez J., Zúñiga G., Ramírez-Saad H.C., Hernández-Rodríguez C. ( 2012;). Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64 268278 [CrossRef] [PubMed] .
    [Google Scholar]
  18. Morales-Jiménez J., Vera-Ponce de León A., García-Domínguez A., Martínez-Romero E., Zúñiga G., Hernández-Rodríguez C. ( 2013;). Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66 200210 [CrossRef] [PubMed] .
    [Google Scholar]
  19. Mulet M., Gomila M., Lemaitre B., Lalucat J., García-Valdés E. ( 2012;). Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov.. Syst Appl Microbiol 35 145149 [CrossRef] [PubMed] .
    [Google Scholar]
  20. O'Gara F., Shanmugam K.T. ( 1976;). Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as . Biochim Biophys Acta 437 313321 [CrossRef] [PubMed] .
    [Google Scholar]
  21. Opota O., Vallet-Gély I., Vincentelli R., Kellenberger C., Iacovache I., Gonzalez M.R., Roussel A., van der Goot F.G., Lemaitre B. ( 2011;). Monalysin, a novel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7 e1002259 [CrossRef] [PubMed] .
    [Google Scholar]
  22. Palleroni N.J. ( 2005;). Genus I. Pseudomonas Migula 1894, 237AL (nom. cons., Opin. 5 of the Jud. Comm. 1952, 121). . In Bergey's Manual of Systematic Bacteriology, pp. 323379. Edited by Boone D. R., Brenner D. J., Castenholz R. W., Garrity G. M., Krieg N. R., Staley J. T. vol. 2 part B , 2nd edn.., New York: Springer;.
    [Google Scholar]
  23. Peix A., Rivas R., Mateos P.F., Martínez-Molina E., Rodríguez-Barrueco C., Velázquez E. ( 2003;). Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53 20672072 [CrossRef] [PubMed] .
    [Google Scholar]
  24. Ramírez-Bahena M.H., Cuesta M.J., Flores-Félix J.D., Mulas R., Rivas R., Castro-Pinto J., Brañas J., Mulas D., González-Andrés F., other authors. ( 2014;). Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 64 23382345 [CrossRef] [PubMed] .
    [Google Scholar]
  25. Rivas R., García-Fraile P., Mateos P.F., Martínez-Molina E., Velázquez E. ( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 44 181187 [CrossRef] [PubMed] .
    [Google Scholar]
  26. Rogers J.S., Swofford D.L. ( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47 7789 [CrossRef] [PubMed] .
    [Google Scholar]
  27. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  28. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [CrossRef] [PubMed] .
    [Google Scholar]
  30. Thompson J.D., Higgins D.G., Gibson T.J. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 46734680 [CrossRef] [PubMed] .
    [Google Scholar]
  31. Waffenschmidt S., Jaenicke L. ( 1987;). Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal Biochem 165 337340 [CrossRef] [PubMed] .
    [Google Scholar]
  32. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [CrossRef].
    [Google Scholar]
  33. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M. ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51 13151322 [PubMed]. [CrossRef]
    [Google Scholar]
  34. Xiao Y.P., Hui W., Wang Q., Roh S.W., Shi X.Q., Shi J.H., Quan Z.X. ( 2009;). Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int J Syst Evol Microbiol 59 25942598 [CrossRef] [PubMed] .
    [Google Scholar]
  35. Yamamoto S., Kasai H., Arnold D.L., Jackson R.W., Vivian A., Harayama S. ( 2000;). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146 23852394 [PubMed]. [CrossRef]
    [Google Scholar]
  36. Zhang F., Huang Y.H., Liu S.Z., Zhang L., Li B.T., Zhao X.X., Fu Y., Liu J.J., Zhang X.X. ( 2013;). Pseudomonas reactans, a bacterial strain isolated from the intestinal flora of Blattella germanica with anti-Beauveria bassiana activity. Environ Entomol 42 453459 [CrossRef] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000344
Loading
/content/journal/ijsem/10.1099/ijs.0.000344
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error