1887

Abstract

We isolated a strain coded Esc2Am during a study focused on the microbial diversity of adult specimens of the bark beetle . Its 16S rRNA gene sequence had 99.4 % similarity with respect to its closest relative, IH5. The analysis of partial sequences of the housekeeping genes , and confirmed that strain Esc2Am formed a cluster with IH5 clearly separated from the remaining species of the genus . Strain Esc2Am had polar flagella and could grow at temperatures from 4 °C to 30 °C. The respiratory quinone was Q9 and the main fatty acids were C, Cω7 and/or Cω6 in summed feature 8 and Cω7 and/or Cω6 in summed feature 3. DNA–DNA hybridization results showed 51 % relatedness with respect to IH5. Oxidase, catalase and urease-positive, the arginine dihydrolase system was present but nitrate reduction and β-galactosidase production were negative. Aesculin hydrolysis was positive. Based on the results from the genotypic, phenotypic and chemotaxonomic analyses, we propose the classification of strain Esc2Am as representing a novel species of the genus , for which we propose the name sp. nov. The type strain is Esc2Am ( = LMG 28558 = CECT 8695).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000344
2015-09-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2852.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000344&mimeType=html&fmt=ahah

References

  1. Ait Tayeb L. , Ageron E. , Grimont F. , Grimont P.A.D. . ( 2005;). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156: 763–773 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Alvarez C. , Kukutla P. , Jiang J. , Yu W. , Xu J. . ( 2012;). Draft genome sequence of Pseudomonas sp. strain Ag1, isolated from the midgut of the malaria mosquito Anopheles gambiae . J Bacteriol 194: 5449 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bansal R. , Hulbert S.H. , Reese J.C. , Whitworth R.J. , Stuart J.J. , Chen M.S. . ( 2014;). Pyrosequencing reveals the predominance of pseudomonadaceae in gut microbiome of a gall midge. Pathogens 3: 459–472 [CrossRef] [PubMed].
    [Google Scholar]
  5. Clark L.L. , Dajcs J.J. , McLean C.H. , Bartell J.G. , Stroman D.W. . ( 2006;). Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int J Syst Evol Microbiol 56: 709–714 [CrossRef] [PubMed].
    [Google Scholar]
  6. Doetsch R.N. . ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  8. García-Fraile P. , Chudíčková M. , Benada O. , Pikula J. , Kolarˇík M. . ( 2015;). Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves. Int J Syst Evol Microbiol 65: 90–94 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hu X. , Yu J. , Wang C. , Chen H. . ( 2014;). Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5: 455–465 [CrossRef].
    [Google Scholar]
  10. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  12. Larkin M.A. , Blackshields G. , Brown N.P. , Chenna R. , McGettigan P.A. , McWilliam H. , Valentin F. , Wallace I.M. , Wilm A. , other authors . ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  13. Maleki-Ravasan N. , Oshaghi M.A. , Hajikhani S. , Saeidi Z. , Akhavan A.A. , Gerami-Shoar M. , Shirazi M.H. , Yakhchali B. , Rassi Y. , Afshar D. . ( 2014;). Aerobic microbial community of insectary population of Phlebotomus papatasi . J Arthropod Borne Dis 8: 69–81 [PubMed].
    [Google Scholar]
  14. Mandel M. , Marmur J. . ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B: 195–206.[CrossRef]
    [Google Scholar]
  15. Mateos P.F. , Jimenez-Zurdo J.I. , Chen J. , Squartini A.S. , Haack S.K. , Martinez-Molina E. , Hubbell D.H. , Dazzo F.B. . ( 1992;). Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58: 1816–1822 [PubMed].
    [Google Scholar]
  16. Moore E.D.B. , Tindall B.J. , Martins dos Santos V.A.P. , Pieper D.H. , Ramos J.L. , Palleroni N.J. . ( 2006;). Nonmedical: Pseudomonas . . In The Prokaryotes, pp. 646–703. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . New York: Springer; [CrossRef].
    [Google Scholar]
  17. Morales-Jiménez J. , Zúñiga G. , Ramírez-Saad H.C. , Hernández-Rodríguez C. . ( 2012;). Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64: 268–278 [CrossRef] [PubMed].
    [Google Scholar]
  18. Morales-Jiménez J. , Vera-Ponce de León A. , García-Domínguez A. , Martínez-Romero E. , Zúñiga G. , Hernández-Rodríguez C. . ( 2013;). Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66: 200–210 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mulet M. , Gomila M. , Lemaitre B. , Lalucat J. , García-Valdés E. . ( 2012;). Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov.. Syst Appl Microbiol 35: 145–149 [CrossRef] [PubMed].
    [Google Scholar]
  20. O'Gara F. , Shanmugam K.T. . ( 1976;). Regulation of nitrogen fixation by Rhizobia. Export of fixed N2 as . Biochim Biophys Acta 437: 313–321 [CrossRef] [PubMed].
    [Google Scholar]
  21. Opota O. , Vallet-Gély I. , Vincentelli R. , Kellenberger C. , Iacovache I. , Gonzalez M.R. , Roussel A. , van der Goot F.G. , Lemaitre B. . ( 2011;). Monalysin, a novel β-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7: e1002259 [CrossRef] [PubMed].
    [Google Scholar]
  22. Palleroni N.J. . ( 2005;). Genus I. Pseudomonas Migula 1894, 237AL (nom. cons., Opin. 5 of the Jud. Comm. 1952, 121). . In Bergey's Manual of Systematic Bacteriology, pp. 323–379. Edited by Boone D. R. , Brenner D. J. , Castenholz R. W. , Garrity G. M. , Krieg N. R. , Staley J. T. . vol. 2 part B , 2nd edn.., New York: Springer;.
    [Google Scholar]
  23. Peix A. , Rivas R. , Mateos P.F. , Martínez-Molina E. , Rodríguez-Barrueco C. , Velázquez E. . ( 2003;). Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro . Int J Syst Evol Microbiol 53: 2067–2072 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ramírez-Bahena M.H. , Cuesta M.J. , Flores-Félix J.D. , Mulas R. , Rivas R. , Castro-Pinto J. , Brañas J. , Mulas D. , González-Andrés F. , other authors . ( 2014;). Pseudomonas helmanticensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 64: 2338–2345 [CrossRef] [PubMed].
    [Google Scholar]
  25. Rivas R. , García-Fraile P. , Mateos P.F. , Martínez-Molina E. , Velázquez E. . ( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 44: 181–187 [CrossRef] [PubMed].
    [Google Scholar]
  26. Rogers J.S. , Swofford D.L. . ( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47: 77–89 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  30. Thompson J.D. , Higgins D.G. , Gibson T.J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  31. Waffenschmidt S. , Jaenicke L. . ( 1987;). Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal Biochem 165: 337–340 [CrossRef] [PubMed].
    [Google Scholar]
  32. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  33. Willems A. , Doignon-Bourcier F. , Goris J. , Coopman R. , de Lajudie P. , De Vos P. , Gillis M. . ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51: 1315–1322 [PubMed].[CrossRef]
    [Google Scholar]
  34. Xiao Y.P. , Hui W. , Wang Q. , Roh S.W. , Shi X.Q. , Shi J.H. , Quan Z.X. . ( 2009;). Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. Int J Syst Evol Microbiol 59: 2594–2598 [CrossRef] [PubMed].
    [Google Scholar]
  35. Yamamoto S. , Kasai H. , Arnold D.L. , Jackson R.W. , Vivian A. , Harayama S. . ( 2000;). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 2385–2394 [PubMed].[CrossRef]
    [Google Scholar]
  36. Zhang F. , Huang Y.H. , Liu S.Z. , Zhang L. , Li B.T. , Zhao X.X. , Fu Y. , Liu J.J. , Zhang X.X. . ( 2013;). Pseudomonas reactans, a bacterial strain isolated from the intestinal flora of Blattella germanica with anti-Beauveria bassiana activity. Environ Entomol 42: 453–459 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000344
Loading
/content/journal/ijsem/10.1099/ijs.0.000344
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error