1887

Abstract

The facultatively aerobic, non-hydrogenotrophic, iron (Fe)-corroding, nitrate-reducing sp. strain MIC1-1 was characterized for representation of a novel species of the genus . Strain MIC1-1 grew optimally at 35–37 °C, at pH 6.5 and with 2  % (w/v) NaCl. Strain MIC1-1 also grew fermentatively on some pentoses, hexoses, disaccharides and soluble starch. Succinic acid was the major end-product from -glucose fermentation. Strain MIC1-1 was differentiated from the type strain of by cell size, optimum growth temperature, range of temperature and NaCl for growth, and nitrate reduction. On the basis of phenotypic features and the phylogenetic position, a novel species of the genus is proposed for strain MIC1-1, to be named sp. nov. The type strain is MIC1-1 ( = JCM 18694 = NBRC 102688 = DSM 27267). Emended descriptions of the genus and are also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000343
2015-09-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2865.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000343&mimeType=html&fmt=ahah

References

  1. De Windt W. , Boon N. , Siciliano S.D. , Verstraete W. . ( 2003;). Cell density related H2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1. Environ Microbiol 5: 1192–1202 [CrossRef] [PubMed].
    [Google Scholar]
  2. Dinh H.T. , Kuever J. , Mußmann M. , Hassel A.W. , Stratmann M. , Widdel F. . ( 2004;). Iron corrosion by novel anaerobic microorganisms. Nature 427: 829–832 [CrossRef] [PubMed].
    [Google Scholar]
  3. Enning D. , Venzlaff H. , Garrelfs J. , Dinh H.T. , Meyer V. , Mayrhofer K. , Hassel A.W. , Stratmann M. , Widdel F. . ( 2012;). Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14: 1772–1787 [CrossRef] [PubMed].
    [Google Scholar]
  4. Fan X. , Guan X. , Ma J. , Ai H. . ( 2009;). Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control. J Environ Sci (China) 21: 1028–1035 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Ginner J.L. , Alvarez P.J.J. , Smith S.L. , Scherer M.M. . ( 2004;). Nitrate and nitrite reduction by Fe0: influence of mass transport, temperature, and denitrifying microbes. Environ Eng Sci 21: 219–229 [CrossRef].
    [Google Scholar]
  7. Hasegawa M. , Fujiwara M. . ( 1993;). Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 2: 1–5 [CrossRef] [PubMed].
    [Google Scholar]
  8. Holmes D.E. , Nevin K.P. , Woodard T.L. , Peacock A.D. , Lovley D.R. . ( 2007;). Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 57: 701–707 [CrossRef] [PubMed].
    [Google Scholar]
  9. Iino T. , Mori K. , Uchino Y. , Nakagawa T. , Harayama S. , Suzuki K. . ( 2010;). Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60: 1376–1382 [CrossRef] [PubMed].
    [Google Scholar]
  10. Iino T. , Mori K. , Itoh T. , Kudo T. , Suzuki K. , Ohkuma M. . ( 2014;). Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov.. Int J Syst Evol Microbiol 64: 3660–3667 [CrossRef] [PubMed].
    [Google Scholar]
  11. Iino T. , Ito K. , Wakai S. , Tsurumaru H. , Ohkuma M. , Harayama S. . ( 2015;). Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81: 1839–1846 [CrossRef] [PubMed].
    [Google Scholar]
  12. Javaherdashti R. . ( 2008;). Microbiologically Influenced Corrosion: An Engineering Insight., New York: Springer;.
    [Google Scholar]
  13. Kielemoes J. , De Boever P. , Verstraete W. . ( 2000;). Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34: 663–671 [CrossRef].
    [Google Scholar]
  14. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  15. Lechevalier M.P. , De Bièvre C. , Lechevalier H.A. . ( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5: 249–260 [CrossRef].
    [Google Scholar]
  16. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Steppi S. . ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  17. McBeth J.M. , Little B.J. , Ray R.I. , Farrar K.M. , Emerson D. . ( 2011;). Neutrophilic iron-oxidizing zetaproteobacteria and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol 77: 1405–1412 [CrossRef] [PubMed].
    [Google Scholar]
  18. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  20. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101., Newark, DE: MIDI Inc;.
    [Google Scholar]
  21. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  22. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  23. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  24. Till B.A. , Weathers L.J. , Alvarez P.J.J. . ( 1998;). Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32: 634–639 [CrossRef].
    [Google Scholar]
  25. Uchiyama T. , Ito K. , Mori K. , Tsurumaru H. , Harayama S. . ( 2010;). Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76: 1783–1788 [CrossRef] [PubMed].
    [Google Scholar]
  26. Venzlaff H. , Enning D. , Srinivasan J. , Mayrhofer K.J.J. , Hassel A.W. , Widdel F. , Stratmann M. . ( 2013;). Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci 66: 88–96 [CrossRef].
    [Google Scholar]
  27. Xu D. , Li Y. , Song F. , Gu T. . ( 2013;). Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis . Corros Sci 77: 385–390 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000343
Loading
/content/journal/ijsem/10.1099/ijs.0.000343
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error