1887

Abstract

Two yellow bacterial strains, designated NBD5 and NBD8, isolated from Noni ( L.) branch were investigated using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-spore-forming, non-motile and short rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the strains were members of a novel species of the genus , the seven closest neighbours being SY-6 (96.9  % similarity), B2-7 (95.8  %), 1007 (94.9  %), IFO 13937 (94.7  %), Gsoil 1429 (94.6  %), RW1 (94.6  %) and CC-Nfb-2 (94.5  %). Strains NBD5 and NBD8 had sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine as the major polar lipids, ubiquinone 10 as the predominant respiratory quinone, and -homospermidine as the major polyamine. Strains NBD5 and NBD8 were clearly distinguished from reference type strains based on phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data analysis, and comparison of a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains NBD5 and NBD8 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NBD5 ( = DSM 29151 = KCTC 42183 = CICC 10879).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000340
2015-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2817.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000340&mimeType=html&fmt=ahah

References

  1. Busse H.-J., Bunka S., Hensel A., Lubitz W. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47 698708 [View Article].
    [Google Scholar]
  2. Chen Q.H., Chen J.H., Ruan Y., Zhang Y.Q., Tang S.K., Liu Z.X., Li W.J., Chen Y.G. ( 2011;). Sphingomonas hunanensis sp. nov., isolated from forest soil. Antonie van Leeuwenhoek 99 753760 [View Article] [PubMed] .
    [Google Scholar]
  3. Chen H., Jogler M., Rohde M., Klenk H.P., Busse H.J., Tindall B.J., Spröer C., Overmann J. ( 2013a;). Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 63 735743 [View Article] [PubMed] .
    [Google Scholar]
  4. Chen H., Jogler M., Tindall B.J., Klenk H.P., Rohde M., Busse H.J., Overmann J. ( 2013b;). Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 63 10171023 [View Article] [PubMed] .
    [Google Scholar]
  5. Choi T.E., Liu Q.M., Yang J.E., Sun S., Kim S.Y., Yi T.H., Im W.T. ( 2010;). Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 48 760766 [View Article] [PubMed] .
    [Google Scholar]
  6. Chung E.J., Jo E.J., Yoon H.S., Song G.C., Jeon C.O., Chung Y.R. ( 2011;). Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 61 23892394 [View Article] [PubMed] .
    [Google Scholar]
  7. Eck R.V., Dayhoff M.O. ( 1966). Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation;.
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [View Article].
    [Google Scholar]
  9. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [View Article] [PubMed] .
    [Google Scholar]
  10. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [View Article].
    [Google Scholar]
  11. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [View Article].
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. ( 1994). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  13. Han S.I., Lee J.C., Ohta H., Whang K.S. ( 2014;). Sphingomonas oligoaromativorans sp. nov., an oligotrophic bacterium isolated from a forest soil. Int J Syst Evol Microbiol 64 16791684 [View Article] [PubMed] .
    [Google Scholar]
  14. Holmes B., Owen R.J., Evans A., Malnick H., Willcox W.R. ( 1977;). Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 27 133146 [View Article].
    [Google Scholar]
  15. Huang J., Huang Z., Zhang Z.D., He L.Y., Sheng X.F. ( 2014;). Sphingomonas yantingensis sp. nov., a mineral-weathering bacterium isolated from purplish paddy soil. Int J Syst Evol Microbiol 64 10301034 [View Article] [PubMed] .
    [Google Scholar]
  16. Kim H., Nishiyama M., Kunito T., Senoo K., Kawahara K., Murakami K., Oyaizu H. ( 1998;). High population of Sphingomonas species on plant surface. J Appl Microbiol 85 731736 [View Article].
    [Google Scholar]
  17. Kim S.J., Moon J.Y., Lim J.M., Ahn J.H., Weon H.Y., Ahn T.Y., Kwon S.W. ( 2014;). Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 64 926932 [View Article] [PubMed] .
    [Google Scholar]
  18. Kimura M. ( 1983). The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article].
    [Google Scholar]
  19. Komagata K., Suzuki K. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207 [View Article].
    [Google Scholar]
  20. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematic, pp. 115175. Edited by Stackerandt E., Goodfellow M. Chichester: Wiley;.
    [Google Scholar]
  21. Lin S.Y., Shen F.T., Lai W.A., Zhu Z.L., Chen W.M., Chou J.H., Lin Z.Y., Young C.C. ( 2012;). Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 62 15811586 [View Article] [PubMed] .
    [Google Scholar]
  22. Luo Y.R., Tian Y., Huang X., Kwon K., Yang S.H., Seo H.S., Kim S.J., Zheng T.L. ( 2012;). Sphingomonas polyaromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol Microbiol 62 12231227 [View Article] [PubMed] .
    [Google Scholar]
  23. Margesin R., Zhang D.C., Busse H.J. ( 2012;). Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 62 15581563 [View Article] [PubMed] .
    [Google Scholar]
  24. Marmur J. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3 208218 [View Article].
    [Google Scholar]
  25. Marmur J., Doty P. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5 109118 [View Article] [PubMed] .
    [Google Scholar]
  26. Niharika N., Jindal S., Kaur J., Lal R. ( 2012;). Sphingomonas indica sp. nov., isolated from hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 62 29973002 [View Article] [PubMed] .
    [Google Scholar]
  27. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  28. Skerman V.B.D. ( 1967). A Guide to the Identification of the Genera of Bacteria , 2nd edn. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  29. Son H.M., Yang J.E., Park Y., Han C.K., Kim S.G., Kook M., Yi T.H. ( 2013;). Sphingomonas kyungheensis sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63 38483853 [View Article] [PubMed] .
    [Google Scholar]
  30. Su B.N., Pawlus A.D., Jung H.A., Keller W.J., McLaughlin J.L., Kinghorn A.D. ( 2005;). Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity. J Nat Prod 68 592595 [View Article] [PubMed] .
    [Google Scholar]
  31. Taibi G., Schiavo M.R., Gueli M.C., Rindina P.C., Muratore R., Nicotra C.M.A. ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 745 431437 [View Article] [PubMed] .
    [Google Scholar]
  32. Takeuchi M., Kawai F., Shimada Y., Yokota A. ( 1993;). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16 227238 [View Article].
    [Google Scholar]
  33. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. ( 1995;). Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45 334341 [View Article] [PubMed] .
    [Google Scholar]
  34. Takeuchi M., Hamana K., Hiraishi A. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51 14051417 [PubMed]. [CrossRef]
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed] .
    [Google Scholar]
  36. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed] .
    [Google Scholar]
  37. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  38. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. ( 2001;). Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51 281292 [PubMed]. [CrossRef]
    [Google Scholar]
  39. Yi T.H., Han C.K., Srinivasan S., Lee K.J., Kim M.K. ( 2010;). Sphingomonas humi sp. nov., isolated from soil. J Microbiol 48 165169 [View Article] [PubMed] .
    [Google Scholar]
  40. Zhang J.Y., Liu X.Y., Liu S.J. ( 2010;). Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60 790795 [View Article] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000340
Loading
/content/journal/ijsem/10.1099/ijs.0.000340
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error