1887

Abstract

Two yellow bacterial strains, designated NBD5 and NBD8, isolated from Noni ( L.) branch were investigated using a polyphasic taxonomic approach. Cells were Gram-stain-negative, aerobic, non-spore-forming, non-motile and short rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the strains were members of a novel species of the genus , the seven closest neighbours being SY-6 (96.9  % similarity), B2-7 (95.8  %), 1007 (94.9  %), IFO 13937 (94.7  %), Gsoil 1429 (94.6  %), RW1 (94.6  %) and CC-Nfb-2 (94.5  %). Strains NBD5 and NBD8 had sphingoglycolipid, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine as the major polar lipids, ubiquinone 10 as the predominant respiratory quinone, and -homospermidine as the major polyamine. Strains NBD5 and NBD8 were clearly distinguished from reference type strains based on phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data analysis, and comparison of a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains NBD5 and NBD8 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NBD5 ( = DSM 29151 = KCTC 42183 = CICC 10879).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000340
2015-09-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2817.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000340&mimeType=html&fmt=ahah

References

  1. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  2. Chen Q.H. , Chen J.H. , Ruan Y. , Zhang Y.Q. , Tang S.K. , Liu Z.X. , Li W.J. , Chen Y.G. . ( 2011;). Sphingomonas hunanensis sp. nov., isolated from forest soil. Antonie van Leeuwenhoek 99: 753–760 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chen H. , Jogler M. , Rohde M. , Klenk H.P. , Busse H.J. , Tindall B.J. , Spröer C. , Overmann J. . ( 2013a;). Sphingobium limneticum sp. nov. and Sphingobium boeckii sp. nov., two freshwater planktonic members of the family Sphingomonadaceae, and reclassification of Sphingomonas suberifaciens as Sphingobium suberifaciens comb. nov. Int J Syst Evol Microbiol 63: 735–743 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chen H. , Jogler M. , Tindall B.J. , Klenk H.P. , Rohde M. , Busse H.J. , Overmann J. . ( 2013b;). Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 63: 1017–1023 [CrossRef] [PubMed].
    [Google Scholar]
  5. Choi T.E. , Liu Q.M. , Yang J.E. , Sun S. , Kim S.Y. , Yi T.H. , Im W.T. . ( 2010;). Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 48: 760–766 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chung E.J. , Jo E.J. , Yoon H.S. , Song G.C. , Jeon C.O. , Chung Y.R. . ( 2011;). Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 61: 2389–2394 [CrossRef] [PubMed].
    [Google Scholar]
  7. Eck R.V. , Dayhoff M.O. . ( 1966;). Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation;.
    [Google Scholar]
  8. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  9. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  11. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . ( 1994;). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  13. Han S.I. , Lee J.C. , Ohta H. , Whang K.S. . ( 2014;). Sphingomonas oligoaromativorans sp. nov., an oligotrophic bacterium isolated from a forest soil. Int J Syst Evol Microbiol 64: 1679–1684 [CrossRef] [PubMed].
    [Google Scholar]
  14. Holmes B. , Owen R.J. , Evans A. , Malnick H. , Willcox W.R. . ( 1977;). Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 27: 133–146 [CrossRef].
    [Google Scholar]
  15. Huang J. , Huang Z. , Zhang Z.D. , He L.Y. , Sheng X.F. . ( 2014;). Sphingomonas yantingensis sp. nov., a mineral-weathering bacterium isolated from purplish paddy soil. Int J Syst Evol Microbiol 64: 1030–1034 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kim H. , Nishiyama M. , Kunito T. , Senoo K. , Kawahara K. , Murakami K. , Oyaizu H. . ( 1998;). High population of Sphingomonas species on plant surface. J Appl Microbiol 85: 731–736 [CrossRef].
    [Google Scholar]
  17. Kim S.J. , Moon J.Y. , Lim J.M. , Ahn J.H. , Weon H.Y. , Ahn T.Y. , Kwon S.W. . ( 2014;). Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 64: 926–932 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  19. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  20. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematic, pp. 115–175. Edited by Stackerandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  21. Lin S.Y. , Shen F.T. , Lai W.A. , Zhu Z.L. , Chen W.M. , Chou J.H. , Lin Z.Y. , Young C.C. . ( 2012;). Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 62: 1581–1586 [CrossRef] [PubMed].
    [Google Scholar]
  22. Luo Y.R. , Tian Y. , Huang X. , Kwon K. , Yang S.H. , Seo H.S. , Kim S.J. , Zheng T.L. . ( 2012;). Sphingomonas polyaromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol Microbiol 62: 1223–1227 [CrossRef] [PubMed].
    [Google Scholar]
  23. Margesin R. , Zhang D.C. , Busse H.J. . ( 2012;). Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. Int J Syst Evol Microbiol 62: 1558–1563 [CrossRef] [PubMed].
    [Google Scholar]
  24. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  25. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  26. Niharika N. , Jindal S. , Kaur J. , Lal R. . ( 2012;). Sphingomonas indica sp. nov., isolated from hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 62: 2997–3002 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Skerman V.B.D. . ( 1967;). A Guide to the Identification of the Genera of Bacteria , 2nd edn. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  29. Son H.M. , Yang J.E. , Park Y. , Han C.K. , Kim S.G. , Kook M. , Yi T.H. . ( 2013;). Sphingomonas kyungheensis sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 63: 3848–3853 [CrossRef] [PubMed].
    [Google Scholar]
  30. Su B.N. , Pawlus A.D. , Jung H.A. , Keller W.J. , McLaughlin J.L. , Kinghorn A.D. . ( 2005;). Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity. J Nat Prod 68: 592–595 [CrossRef] [PubMed].
    [Google Scholar]
  31. Taibi G. , Schiavo M.R. , Gueli M.C. , Rindina P.C. , Muratore R. , Nicotra C.M.A. . ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 745: 431–437 [CrossRef] [PubMed].
    [Google Scholar]
  32. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993;). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov., and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16: 227–238 [CrossRef].
    [Google Scholar]
  33. Takeuchi M. , Sakane T. , Yanagi M. , Yamasato K. , Hamana K. , Yokota A. . ( 1995;). Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45: 334–341 [CrossRef] [PubMed].
    [Google Scholar]
  34. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405–1417 [PubMed].[CrossRef]
    [Google Scholar]
  35. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  38. Yabuuchi E. , Yamamoto H. , Terakubo S. , Okamura N. , Naka T. , Fujiwara N. , Kobayashi K. , Kosako Y. , Hiraishi A. . ( 2001;). Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51: 281–292 [PubMed].[CrossRef]
    [Google Scholar]
  39. Yi T.H. , Han C.K. , Srinivasan S. , Lee K.J. , Kim M.K. . ( 2010;). Sphingomonas humi sp. nov., isolated from soil. J Microbiol 48: 165–169 [CrossRef] [PubMed].
    [Google Scholar]
  40. Zhang J.Y. , Liu X.Y. , Liu S.J. . ( 2010;). Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60: 790–795 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000340
Loading
/content/journal/ijsem/10.1099/ijs.0.000340
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error