1887

Abstract

A novel bacterial strain, designated EC29, was isolated from the brown alga collected on Jeju Island, Republic of Korea. Cells of strain EC29 were Gram-stain-negative, aerobic, rod-shaped and motile by gliding. Growth was observed at 10–30 °C (optimum, 20–25 °C), at pH 6.0–9.5 (optimum, pH 7.5) and in the presence of 1–5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the strain belonged to the genus . Strain EC29 exhibited the highest 16S rRNA gene sequence similarities, of 96.5–97.8 %, to the type strains of EM106, KMM 6211 and KMM 6390. Strain EC29 exhibited < 27 % DNA–DNA relatedness with EM106 and KMM 6211. The predominant fatty acids of strain EC29 were iso-C, iso-C G, C, iso-C 3-OH, iso-C 3-OH and anteiso-C. The DNA G+C content was 31.1 mol% and the major respiratory quinone was menaquinone-6 (MK-6). Based on a polyphasic study, strain EC29 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EC29 ( = KCTC 32172 = JCM 18703).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000334
2015-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/2791.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000334&mimeType=html&fmt=ahah

References

  1. Begum Z. , Srinivas T.N.R. , Manasa P. , Sailaja B. , Sunil B. , Prasad S. , Shivaji S. . ( 2013;). Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 63: 1646–1652 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J.-F. . ( 2011;). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey's Manual of Systematic Bacteriology vol. 4 , 2nd edn.. pp. 106–111. Edited by Krieg N. R. , Ludwig W. , Whitman W. B. , Hedlund B. P. , Paster B. J. , Staley J. T. , Ward N. , Brown D. , Parte A. . New York: Springer;.
    [Google Scholar]
  3. Bernardet J.-F. , Nakagawa Y. . ( 2006;). An introduction to the family Flavobacteriaceae . . In The Prokaryotes. A Handbook on the Biology of Bacteria vol. 7 , 3rd edn.. pp. 455–480. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . New York: Springer;.
    [Google Scholar]
  4. Bernardet J.-F. , Nakagawa Y. , Holmes B. , Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes . ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bowman J.P. . ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [PubMed].[CrossRef]
    [Google Scholar]
  6. Christensen H. , Angen O. , Mutters R. , Olsen J.E. , Bisgaard M. . ( 2000;). DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50: 1095–1102 [CrossRef] [PubMed].
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  11. Ivanova E.P. , Christen R. , Gorshkova N.M. , Zhukova N.V. , Kurilenko V.V. , Crawford R.J. , Mikhailov V.V. . ( 2010;). Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella . Int J Syst Evol Microbiol 60: 1577–1580 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kang C.-H. , Lee S.-Y. , Yoon J.-H. . ( 2013;). Winogradskyella litorisediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 63: 1793–1799 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim S.B. , Nedashkovskaya O.I. . ( 2010;). Winogradskyella pacifica sp. nov., a marine bacterium of the family Flavobacteriaceae . Int J Syst Evol Microbiol 60: 1948–1951 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim J.-Y. , Oh D.-C. . ( 2012;). Winogradskyella jejuensis sp. nov., a marine bacterium isolated from a brown alga Carpopeltis affinis . J Microbiol 50: 888–892 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kim S.-J. , Choi Y.-R. , Park S.-J. , Kim J.-G. , Shin K.-S. , Roh D.-H. , Rhee S.-K. . ( 2013;). Winogradskyella pulchriflava sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 63: 3062–3068 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kluge A.G. , Farris F.S. . ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  18. Komagata K. , Suzuki K. . ( 1987;). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  19. Lau S.C.K. , Tsoi M.M.Y. , Li X. , Plakhotnikova I. , Dobretsov S. , Lau K.W.K. , Wu M. , Wong P.-K. , Pawlik J.R. , Qian P.-Y. . ( 2005;). Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int J Syst Evol Microbiol 55: 1589–1592 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lee S.-Y. , Park S. , Oh T.-K. , Yoon J.-H. . ( 2012;). Winogradskyella aquimaris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62: 1814–1818 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lee D.-H. , Cho S.J. , Kim S.M. , Lee S.B. . ( 2013;). Winogradskyella damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63: 321–326 [CrossRef] [PubMed].
    [Google Scholar]
  22. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  23. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  24. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  25. Nedashkovskaya O.I. , Kim S.B. , Han S.K. , Snauwaert C. , Vancanneyt M. , Swings J. , Kim K.O. , Lysenko A.M. , Rohde M. , other authors . ( 2005;). Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae . Int J Syst Evol Microbiol 55: 49–55 [CrossRef] [PubMed].
    [Google Scholar]
  26. Nedashkovskaya O.I. , Vancanneyt M. , Kim S.B. , Zhukova N.V. . ( 2009;). Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 59: 1465–1468 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nedashkovskaya O.I. , Kukhlevskiy A.D. , Zhukova N.V. . ( 2012;). Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia . Int J Syst Evol Microbiol 62: 1450–1456 [CrossRef] [PubMed].
    [Google Scholar]
  28. Park S. , Yoon J.-H. . ( 2013;). Winogradskyella undariae sp. nov., a member of the family Flavobacteriaceae isolated from a brown algae reservoir. Antonie van Leeuwenhoek 104: 619–626 [CrossRef] [PubMed].
    [Google Scholar]
  29. Park S. , Park J.-M. , Won S.-M. , Bae K.S. , Yoon J.-H. . ( 2014;). Winogradskyella wandonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 64: 1520–1525 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pinhassi J. , Nedashkovskaya O.I. , Hagström A. , Vancanneyt M. . ( 2009;). Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. Int J Syst Evol Microbiol 59: 2180–2184 [CrossRef] [PubMed].
    [Google Scholar]
  31. Romanenko L.A. , Tanaka N. , Frolova G.M. , Mikhailov V.V. . ( 2009;). Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the Sea of Japan. Int J Syst Evol Microbiol 59: 1443–1446 [CrossRef] [PubMed].
    [Google Scholar]
  32. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  33. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . In MIDI Inc., Newark, DE:.
    [Google Scholar]
  34. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  35. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  38. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  39. Yoon J.-H. , Lee S.-Y. . ( 2012;). Winogradskyella multivorans sp. nov., a polysaccharide-degrading bacterium isolated from seawater of an oyster farm. Antonie van Leeuwenhoek 102: 231–238 [CrossRef] [PubMed].
    [Google Scholar]
  40. Yoon B.-J. , Byun H.-D. , Kim J.-Y. , Lee D.-H. , Kahng H.-Y. , Oh D.-C. . ( 2011;). Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella . Int J Syst Evol Microbiol 61: 1539–1543 [CrossRef] [PubMed].
    [Google Scholar]
  41. ZoBell C.E. . ( 1941;). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4: 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000334
Loading
/content/journal/ijsem/10.1099/ijs.0.000334
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error