1887

Abstract

Two Gram-staining-positive, aerobic, endospore-forming, motile bacteria, strains DT7-4 and DLE-12, were isolated from roots of evening primrose () and day lily (), respectively, and subjected to taxonomic characterization. Analysis of 16S rRNA gene sequences indicated that the two strains fell into two distinct phylogenetic clusters belonging to the genus . Strain DT7-4 was most closely related to PALXIL04 and THMBG22, with 96.3 % 16S rRNA gene sequence similarity to each, and strain DLE-12 was most closely related to Gsoil 139 and SG, with 96.6 and 93.3  % sequence similarity, respectively. Both isolates contained anteiso-C as the dominant fatty acid, -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan and MK-7 as the respiratory menaquinone. The cellular polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unidentified polar lipids. The DNA G+C contents of strains DT7-4 and DLE-12 were 50.1 ± 0.7 and 55.2 ± 0.5 mol%, respectively. The chemotaxonomic properties of both isolates were typical of members of the genus . However, our biochemical and phylogenetic analyses distinguished each isolate from related species. Based on our polyphasic taxonomic analysis, strains DT7-4 and DLE-12 should be recognized as representatives of novel species of , for which the names sp. nov. (type strain DT7-4 = KCTC 33186 = JCM 19573) and sp. nov. (type strain DLE-12 = KCTC 33185 = JCM 19572) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000329
2015-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2717.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000329&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F.G., Collins M.D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253–260 [CrossRef][PubMed].
    [Google Scholar]
  2. Carro L., Flores-Félix J.D., Cerda-Castillo E., Ramírez-Bahena M.H., Igual J.M., Tejedor C., Velázquez E., Peix A.. ( 2013;). Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 63: 4433–4438 [CrossRef][PubMed].
    [Google Scholar]
  3. Carro L., Flores-Félix J.D., Ramírez-Bahena M.-H., García-Fraile P., Martínez-Hidalgo P., Igual J.M., Tejedor C., Peix A., Velázquez E.. ( 2014;). Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 64: 3028–3033 [CrossRef][PubMed].
    [Google Scholar]
  4. Collins M.D., Shah H.N., Minnikin D.E.. ( 1980;). A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 48: 277–282 [CrossRef][PubMed].
    [Google Scholar]
  5. Dsouza M., Taylor M.W., Ryan J., MacKenzie A., Lagutin K., Anderson R.F., Turner S.J., Aislabie J.. ( 2014;). Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 64: 1406–1411 [CrossRef][PubMed].
    [Google Scholar]
  6. Faria D.C., Dias A.C., Melo I.S., de Carvalho Costa F.E.. ( 2013;). Endophytic bacteria isolated from orchid and their potential to promote plant growth. World J Microbiol Biotechnol 29: 217–221 [CrossRef][PubMed].
    [Google Scholar]
  7. Gonzalez J.M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef][PubMed].
    [Google Scholar]
  8. Guo X.-Q., Gu J.-Y., Yu Y.-J., Zhang W.-B., He L.-Y., Sheng X.-F.. ( 2014;). Paenibacillus susongensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 64: 3958–3963 [CrossRef][PubMed].
    [Google Scholar]
  9. Han J.-H.. ( 2014;). Root endophytic microbiome in the natural vegetation of Korea PhD thesis Daejeon, Republic of Korea: Chungnam National University;.
    [Google Scholar]
  10. Han S.K., Nedashkovskaya O.I., Mikhailov V.V., Kim S.B., Bae K.S.. ( 2003;). Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53: 2061–2066 [CrossRef][PubMed].
    [Google Scholar]
  11. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.J., Tindall B.J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56: 781–786 [CrossRef][PubMed].
    [Google Scholar]
  12. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef][PubMed].
    [Google Scholar]
  13. Komagata K., Suzuki K.. ( 1988;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  14. Kong B.H., Liu Q.F., Liu M., Liu Y., Liu L., Li C.L., Yu R., Li Y.H.. ( 2013;). Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 63: 1037–1044 [CrossRef][PubMed].
    [Google Scholar]
  15. Lee J., Shin N.R., Jung M.J., Roh S.W., Kim M.S., Lee J.S., Lee K.C., Kim Y.O., Bae J.W.. ( 2013;). Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 63: 428–434 [CrossRef][PubMed].
    [Google Scholar]
  16. Li Y.F., Calley J.N., Ebert P.J., Helmes E.B.. ( 2014a;). Paenibacillus lentus sp. nov., a β-mannanolytic bacterium isolated from mixed soil samples in a selective enrichment using guar gum as the sole carbon source. Int J Syst Evol Microbiol 64: 1166–1172 [CrossRef][PubMed].
    [Google Scholar]
  17. Li J., Lu Q., Liu T., Zhou S., Yang G., Zhao Y.. ( 2014b;). Paenibacillus guangzhouensis sp. nov., an Fe(III)- and humus-reducing bacterium from a forest soil. Int J Syst Evol Microbiol 64: 3891–3896 [CrossRef][PubMed].
    [Google Scholar]
  18. Minnikin D., O'Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  19. Moon J.C., Jung Y.J., Jung J.H., Jung H.S., Cheong Y.R., Jeon C.O., Lee K.O., Lee S.Y.. ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 2753–2757 [CrossRef][PubMed].
    [Google Scholar]
  20. Park M.S., Jung S.R., Lee M.S., Kim K.O., Do J.O., Lee K.H., Kim S.B., Bae K.S.. ( 2005;). Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella Elymus mollis. J Microbiol 43: 219–227 [PubMed].
    [Google Scholar]
  21. Priest F.G.. ( 2009;). Genus I. Paenibacillus. . In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 3, pp. 269–295. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Springer;.
    [Google Scholar]
  22. Rivas R., Mateos P.F., Martínez-Molina E., Velázquez E.. ( 2005;). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55: 743–746 [CrossRef][PubMed].
    [Google Scholar]
  23. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  24. Schaeffer A.B., Fulton M.D.. ( 1933;). A simplified method of staining endospores. Science 77: 194 [CrossRef][PubMed].
    [Google Scholar]
  25. Schwyn B., Neilands J.B.. ( 1987;). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47–56 [CrossRef][PubMed].
    [Google Scholar]
  26. Shida O., Takagi H., Kadowaki K., Nakamura L.K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus Bacillus chondroitinus Bacillus curdlanolyticus Bacillus glucanolyticus Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47: 289–298 [CrossRef][PubMed].
    [Google Scholar]
  27. Shimoyama T., Johari N.B., Tsuruya A., Nair A., Nakayama T.. ( 2014;). Paenibacillus relictisesami sp. nov., isolated from sesame oil cake. Int J Syst Evol Microbiol 64: 1534–1539 [CrossRef][PubMed].
    [Google Scholar]
  28. Shin D.S., Park M.S., Jung S., Lee M.S., Lee K.H., Bae K.S., Kim S.B.. ( 2007;). Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J Microbiol Biotechnol 17: 1361–1368 [PubMed].
    [Google Scholar]
  29. Son J.-S., Kang H.-U., Ghim S.-Y.. ( 2014;). Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis. Int J Syst Evol Microbiol 64: 2865–2870 [CrossRef][PubMed].
    [Google Scholar]
  30. Takeda M., Suzuki I., Koizumi J.. ( 2005;). Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 55: 737–741 [CrossRef][PubMed].
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef][PubMed].
    [Google Scholar]
  32. Tonouchi A., Tazawa D., Fujita T.. ( 2014;). Paenibacillus shirakamiensis sp. nov., isolated from the trunk surface of a Japanese oak (Quercus crispula). Int J Syst Evol Microbiol 64: 1763–1769 [CrossRef][PubMed].
    [Google Scholar]
  33. Ueda J., Yamamoto S., Kurosawa N.. ( 2013;). Paenibacillus thermoaerophilus sp. nov., a moderately thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 63: 3330–3335 [CrossRef][PubMed].
    [Google Scholar]
  34. Wu Y.F., Wu Q.L., Liu S.J.. ( 2013;). Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol 63: 3652–3658 [CrossRef][PubMed].
    [Google Scholar]
  35. Xiang W., Wang G., Wang Y., Yao R., Zhang F., Wang R., Wang D., Zheng S.. ( 2014;). Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 64: 2662–2667 [CrossRef][PubMed].
    [Google Scholar]
  36. Yao R., Wang R., Wang D., Su J., Zheng S., Wang G.. ( 2014;). Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64: 805–811 [CrossRef][PubMed].
    [Google Scholar]
  37. Yoon M.H., Ten L.N., Im W.T.. ( 2007;). Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 57: 1810–1814 [CrossRef][PubMed].
    [Google Scholar]
  38. Zhang J., Wang Z.T., Yu H.M., Ma Y.. ( 2013;). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 63: 1776–1781 [CrossRef][PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000329
Loading
/content/journal/ijsem/10.1099/ijs.0.000329
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error