1887

Abstract

A Gram-stain-positive, ovoid, lactic acid bacterium, strain LMG 27676, was isolated from a spoiled sous-vide-cooked rutabaga. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the genus , with and as the nearest neighbours (99.1 and 98.8 % 16S rRNA gene sequence similarity towards the type strain, respectively). Phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of the , and genes, and biochemical and genotypic characteristics allowed differentiation of strain LMG 27676 from all established species of the genus . Strain LMG 27676 ( = R-50029 = MHB 277 = DSM 27776) therefore represents the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000305
2015-08-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2586.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000305&mimeType=html&fmt=ahah

References

  1. Coenye T. , Falsen E. , Vancanneyt M. , Hoste B. , Govan J.R.W. , Kersters K. , Vandamme P. . ( 1999;). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov.. Int J Syst Bacteriol 49: 405–413 [CrossRef] [PubMed].
    [Google Scholar]
  2. De Bruyne K. , Schillinger U. , Caroline L. , Boehringer B. , Cleenwerck I. , Vancanneyt M. , De Vuyst L. , Franz C.M.A.P. , Vandamme P. . ( 2007;). Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57: 2952–2959 [CrossRef] [PubMed].
    [Google Scholar]
  3. Di Cagno R. , Coda R. , De Angelis M. , Gobbetti M. . ( 2013;). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol 33: 1–10 [CrossRef] [PubMed].
    [Google Scholar]
  4. Ehrmann M.A. , Freiding S. , Vogel R.F. . ( 2009;). Leuconostoc palmae sp. nov., a novel lactic acid bacterium isolated from palm wine. Int J Syst Evol Microbiol 59: 943–947 [CrossRef] [PubMed].
    [Google Scholar]
  5. Endo A. , Okada S. . ( 2008;). Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov.. Int J Syst Evol Microbiol 58: 2195–2205 [CrossRef] [PubMed].
    [Google Scholar]
  6. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  7. García-Gimeno R.M. , Zurera-Cosano G. . ( 1997;). Determination of ready-to-eat vegetable salad shelf-life. Int J Food Microbiol 36: 31–38 [CrossRef] [PubMed].
    [Google Scholar]
  8. Garg N. , Churey J.J. , Splitstoesser D.F. . ( 1990;). Effect of processing conditions on the microflora of fresh-cut vegetables. J Food Prot 53: 701–703.
    [Google Scholar]
  9. Goris J. , Suzuki K.-I. , Vos P.D. , Nakase T. , Kersters K. . ( 1998;). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44: 1148–1153 [CrossRef].
    [Google Scholar]
  10. Kim J. , Chun J. , Han H.U. . ( 2000;). Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50: 1915–1919 [PubMed].[CrossRef]
    [Google Scholar]
  11. Kim B. , Lee J. , Jang J. , Kim J. , Han H. . ( 2003;). Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 53: 1123–1126 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lee S.H. , Park M.S. , Jung J.Y. , Jeon C.O. . ( 2012;). Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. Int J Syst Evol Microbiol 62: 1098–1103 [CrossRef] [PubMed].
    [Google Scholar]
  14. Lyhs U. , Koort J.M.K. , Lundström H.-S. , Björkroth J. . ( 2004;). L. gelidum L. gasicomitatum strains dominated the lactic acid bacterium population associated with strong slime formation in an acetic-acid herring preserve. Int J Food Microbiol 90: 207–218 [CrossRef] [PubMed].
    [Google Scholar]
  15. Mahenthiralingam E. , Campbell M.E. , Henry D.A. , Speert D.P. . ( 1996;). Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis: analysis by randomly amplified polymorphic DNA fingerprinting. J Clin Microbiol 34: 2914–2920 [PubMed].
    [Google Scholar]
  16. Mesbah M. , Whitman W.B. . ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr A 479: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  17. Pitcher D.G. , Saunders N.A. , Owen R.J. . ( 1989;). Rapid extraction of bacterial genomic DNA with guanidinium thiocyanate. Lett Appl Microbiol 8: 151–156 [CrossRef].
    [Google Scholar]
  18. Rahkila R. , De Bruyne K. , Johansson P. , Vandamme P. , Björkroth J. . ( 2014;). Reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum comb. nov., description of Leuconostoc gelidum subsp. aenigmaticum subsp. nov., designation of Leuconostoc gelidum subsp. gelidum subsp. nov. and emended description of Leuconostoc gelidum . Int J Syst Evol Microbiol 64: 1290–1295 [CrossRef] [PubMed].
    [Google Scholar]
  19. Säde E. . ( 2011;). Leuconostoc spoilage of refrigerated, packaged foods. Academic dissertation, University of Helsinki.
  20. Schumann P. . ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129.[CrossRef]
    [Google Scholar]
  21. Tamura K. . ( 1992;). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9: 678–687 [PubMed].
    [Google Scholar]
  22. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  23. Vancanneyt M. , Mengaud J. , Cleenwerck I. , Vanhonacker K. , Hoste B. , Dawyndt P. , Degivry M.C. , Ringuet D. , Janssens D. , Swings J. . ( 2004;). Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int J Syst Evol Microbiol 54: 551–556.[CrossRef]
    [Google Scholar]
  24. Vihavainen E.J. , Murros A.E. , Björkroth K.J. . ( 2008;). Leuconostoc spoilage of vacuum-packaged vegetable sausages. J Food Prot 71: 2312–2315 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000305
Loading
/content/journal/ijsem/10.1099/ijs.0.000305
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error