1887

Abstract

A Gram-stain-negative, slightly curved rod-shaped, non-spore-forming diazotrophic bacterium, designated strain TH16, was isolated from cyanobacterial aggregates taken from eutrophic Lake Taihu, Jiangsu Province, China. The pH range for growth was 5–9 (optimum at pH 7.0), salinity range was 0–2  % (w/v) NaCl (optimum 0  %) and temperature range was 20–37 °C (optimum 30 °C) in nutrient broth. Phylogenetic analysis indicated that strain TH16 clusters near and is closely related to the genus within the family of the class . Within the genus , strain TH16 was related most closely to KBC1 (98.1  % 16S rRNA gene sequence similarity) and CC-LY736 (97.0  %). The DNA G+C content of strain TH16 was 64 mol%. DNA–DNA relatedness between strain TH16 and the type strains of and was 39.6 and 30.1  %, respectively. The major respiratory quinone was ubiquinone Q-10.The major fatty acids (>10  %) were Cω6/Cω7, C 2-OH and C 3-OH. Genes in the operon, encoding proteins of the photosynthetic reaction centre and core light-harvesting complexes, were also present. Based on morphological, chemotaxonomic and phylogenetic data, strain TH16 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is TH16 ( = CGMCC 1.12958 = LMG 28334).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000299
2015-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2537.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000299&mimeType=html&fmt=ahah

References

  1. Ben Dekhil S. , Cahill M. , Stackebrandt E. , Sly L.I. . ( 1997;). Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas Conglomeromonas parooensis sp. nov. Syst Appl Microbio 20: 72–77 [CrossRef].
    [Google Scholar]
  2. Cai H. , Wang K. , Huang S. , Jiao N. , Chen F. . ( 2010;). Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl Environ Microbiol 76: 2955–2960 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cai H.Y. , Yan Z.S. , Wang A.J. , Krumholz L.R. , Jiang H.L. . ( 2013;). Analysis of the attached microbial community on mucilaginous cyanobacterial aggregates in the eutrophic Lake Taihu reveals the importance of Planctomycetes . Microb Ecol 66: 73–83 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cai H. , Jiang H. , Krumholz L.R. , Yang Z. . ( 2014;). Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS One 9: e102879 [CrossRef] [PubMed].
    [Google Scholar]
  5. Eckert B. , Weber O.B. , Kirchhof G. , Halbritter A. , Stoffels M. , Hartmann A. . ( 2001;). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51: 17–26 [PubMed].[CrossRef]
    [Google Scholar]
  6. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  7. Khammas K.M. , Ageron E. , Grimont P.A.D. , Kaiser P. . ( 1989;). Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140: 679–693 [PubMed].
    [Google Scholar]
  8. Lavrinenko K. , Chernousova E. , Gridneva E. , Dubinina G. , Akimov V. , Kuever J. , Lysenko A. , Grabovich M. . ( 2010;). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 60: 2832–2837 [CrossRef] [PubMed].
    [Google Scholar]
  9. Lin S.Y. , Young C.C. , Hupfer H. , Siering C. , Arun A.B. , Chen W.M. , Lai W.A. , Shen F.T. , Rekha P.D. , Yassin A.F. . ( 2009;). Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59: 761–765 [CrossRef] [PubMed].
    [Google Scholar]
  10. Lin S.Y. , Shen F.T. , Young L.S. , Zhu Z.L. , Chen W.M. , Young C.C. . ( 2012;). Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 62: 1185–1190 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lin S.Y. , Hameed A. , Shen F.T. , Liu Y.C. , Hsu Y.H. , Shahina M. , Lai W.A. , Young C.C. . ( 2014;). Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 105: 1149–1162 [CrossRef] [PubMed].
    [Google Scholar]
  12. Paerl H.W. , Xu H. , McCarthy M.J. , Zhu G. , Qin B. , Li Y. , Gardner W.S. . ( 2011;). Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu China): the need for a dual nutrient (N & P) management strategy. Water Res 45: 1973–1983 [CrossRef] [PubMed].
    [Google Scholar]
  13. Paisley R. . ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;.
    [Google Scholar]
  14. Poly F. , Monrozier L.J. , Bally R. . ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152: 95–103 [CrossRef] [PubMed].
    [Google Scholar]
  15. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  16. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24: 1596–1599 [CrossRef] [PubMed].
    [Google Scholar]
  17. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000299
Loading
/content/journal/ijsem/10.1099/ijs.0.000299
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error