1887

Abstract

A marine facultative anaerobe, strain SIP-G1, was isolated from salt marsh sediments, Falmouth, MA, USA. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it belongs to an unclassified clade of that includes numerous sulfur-oxidizing bacteria that are endosymbionts of marine invertebrates endemic to sulfidic habitats. Strain SIP-G1 is a member of the genus , of which there is one previously described isolate, AK4OH1. AK4OH1 was obtained for further characterization and comparison with strain SIP-G1. The two strains were capable of coupling the oxidation of thiosulfate, tetrathionate, elemental sulfur and sulfide to autotrophic growth and they produced sulfur inclusions as metabolic intermediates. They showed varying degrees of O sensitivity, but when provided amino acids or peptides as a source of energy, they appeared more tolerant of O and exhibited concomitant production of elemental sulfur inclusions. The organic substrate preferences and limitations of these two organisms suggest that they possess an oxygen-sensitive carbon fixation pathway(s). Organic acids may be used to produce NADPH through the TCA cycle and are used in the formation of polyhydroxyalkanoates. Cell-wall-deficient morphotypes appeared when organic compounds (especially acetate) were present in excess and reduced sulfur was absent. Levels of DNA–DNA hybridization (∼47 %) and phenotypic characterization indicate that strain SIP-G1 represents a separate species within the genus , for which the name sp. nov. is proposed. The type strain is SIP-G1 ( = ATCC BAA-2640 = DSM 28581). The results also justify emended descriptions of the genus and of

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000295
2015-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2522.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000295&mimeType=html&fmt=ahah

References

  1. Allan E.J., Hoischen C., Gumpert J.. ( 2009;). Bacterial L-forms. Adv Appl Microbiol 68: 1–39 [CrossRef] [PubMed].
    [Google Scholar]
  2. Briers Y., Staubli T., Schmid M.C., Wagner M., Schuppler M., Loessner M.J.. ( 2012;). Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS One 7: e38514 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bruce R.A.. ( 1999;). The microbiology and bioremediative potential of (per)chlorate-reducing bacteria Master's thesis Southern Illinois University;.
    [Google Scholar]
  4. Coates J.D., Achenbach L.A.. ( 2004;). Microbial perchlorate reduction: rocket-fueled metabolism. Nat Rev Microbiol 2: 569–580 [CrossRef] [PubMed].
    [Google Scholar]
  5. Darriba D., Taboada G.L., Doallo R., Posada D.. ( 2012;). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772 [CrossRef] [PubMed].
    [Google Scholar]
  6. DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G.L.. ( 2006;). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dubilier N., Bergin C., Lott C.. ( 2008;). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6: 725–740 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  10. Flood B.E.. ( 2010;). The utilization of important derivatives (TMA & thiotaurine) of eukaryotic osmolytes by novel strains of Eubacteria PhD Thesis University of Southern California;.
    [Google Scholar]
  11. Gros O., Elisabeth N.H., Gustave S.D.D., Caro A., Dubilier N.. ( 2012;). Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol 14: 1584–1595 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hauduc H., Rieger L., Oehmen A., van Loosdrecht M.C., Comeau Y., Héduit A., Vanrolleghem P.A., Gillot S.. ( 2013;). Critical review of activated sludge modeling: state of process knowledge, modeling concepts, and limitations. Biotechnol Bioeng 110: 24–46 [CrossRef] [PubMed].
    [Google Scholar]
  13. Huber T., Faulkner G., Hugenholtz P.. ( 2004;). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319 [CrossRef] [PubMed].
    [Google Scholar]
  14. Joyner J.L., Peyer S.M., Lee R.W.. ( 2003;). Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol Bull 205: 331–338 [CrossRef] [PubMed].
    [Google Scholar]
  15. Jukes T.H., Cantor C.R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N.. New York: [CrossRef] Academic Press;.
    [Google Scholar]
  16. Kim M., Oh H.-S., Park S.-C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  17. Knight V.K., Nijenhuis I., Kerkhof L.J., Häggblom M.M.. ( 2002;). Degradation of aromatic compounds coupled to selenate reduction. Geomicrobiol J 19: 77–86 [CrossRef].
    [Google Scholar]
  18. Kuwahara H., Yoshida T., Takaki Y., Shimamura S., Nishi S., Harada M., Matsuyama K., Takishita K., Kawato M., other authors. ( 2007;). Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii. Curr Biol 17: 881–886 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. New York: Wiley;.
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  21. Markert S., Arndt C., Felbeck H., Becher D., Sievert S.M., Hügler M., Albrecht D., Robidart J., Bench S., other authors. ( 2007;). Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315: 247–250 [CrossRef] [PubMed].
    [Google Scholar]
  22. Markert S., Gardebrecht A., Felbeck H., Sievert S.M., Klose J., Becher D., Albrecht D., Thürmer A., Daniel R., other authors. ( 2011;). Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Proteomics 11: 3106–3117 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mercier R., Domínguez-Cuevas P., Errington J.. ( 2012;). Crucial role for membrane fluidity in proliferation of primitive cells. Cell Rep 1: 417–423 [CrossRef] [PubMed].
    [Google Scholar]
  24. Nakagawa S., Shimamura S., Takaki Y., Suzuki Y., Murakami S., Watanabe T., Fujiyoshi S., Mino S., Sawabe T., other authors. ( 2014;). Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont. ISME J 8: 40–51 [CrossRef] [PubMed].
    [Google Scholar]
  25. Narasingarao P., Häggblom M.M.. ( 2006;). Sedimenticola selenatireducens, gen. nov., sp. nov., an anaerobic selenate-respiring bacterium isolated from estuarine sediment. Syst Appl Microbiol 29: 382–388 [CrossRef] [PubMed].
    [Google Scholar]
  26. Newton I.L., Woyke T., Auchtung T.A., Dilly G.F., Dutton R.J., Fisher M.C., Fontanez K.M., Lau E., Stewart F.J., other authors. ( 2007;). The Calyptogena magnifica chemoautotrophic symbiont genome. Science 315: 998–1000 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nielsen P.H., de Muro M.A., Nielsen J.L.. ( 2000;). Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2: 389–398 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nunoura T., Takaki Y., Kazama H., Kakuta J., Shimamura S., Makita H., Hirai M., Miyazaki M., Takai K.. ( 2014;). Physiological and genomic features of a novel sulfur-oxidizing gammaproteobacterium belonging to a previously uncultivated symbiotic lineage isolated from a hydrothermal vent. PLoS One 9: e104959 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ostle A.G., Holt J.G.. ( 1982;). Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44: 238–241 [PubMed].
    [Google Scholar]
  30. Plazzi F., Ribani A., Passamonti M.. ( 2013;). The complete mitochondrial genome of Solemya velum (Mollusca: Bivalvia) and its relationships with conchifera. BMC Genomics 14: 409 [CrossRef] [PubMed].
    [Google Scholar]
  31. Posada D.. ( 2008;). jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 1253–1256 [CrossRef] [PubMed].
    [Google Scholar]
  32. Pruesse E., Peplies J., Glöckner F.O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  33. Pruski A.M., De Wit R., Fiala-Médioni A.. ( 2001;). Carrier of reduced sulfur is a possible role for thiotaurine in symbiotic species from hydrothermal vents with thiotrophic symbionts. Hydrobiologia 461: 15–23 [CrossRef].
    [Google Scholar]
  34. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O.. ( 2013;). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: (D1), D590–D596 [CrossRef] [PubMed].
    [Google Scholar]
  35. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  36. Sanders J.G., Beinart R.A., Stewart F.J., Delong E.F., Girguis P.R.. ( 2013;). Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J 7: 1556–1567 [CrossRef] [PubMed].
    [Google Scholar]
  37. Schumann P.. ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  38. Stackebrandt E., Goebel B.M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  39. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 [CrossRef] [PubMed].
    [Google Scholar]
  40. Stewart F.J., Dmytrenko O., Delong E.F., Cavanaugh C.M.. ( 2011;). Metatranscriptomic analysis of sulfur oxidation genes in the endosymbiont of Solemya velum. Front Microbiol 2: 134 [CrossRef] [PubMed].
    [Google Scholar]
  41. Streichan M., Golecki J.R., Schön G.. ( 1990;). Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal. FEMS Microbiol Ecol 6: 113–124 [CrossRef].
    [Google Scholar]
  42. Swofford D.L.. ( 2003;). Phylogenetic analysis using parsimony (*and other methods), version 4.b10. Sunderland, MA: Sinauer Associates;.
  43. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  44. Woyke T., Teeling H., Ivanova N.N., Huntemann M., Richter M., Gloeckner F.O., Boffelli D., Anderson I.J., Barry K.W., other authors. ( 2006;). Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443: 950–955 [CrossRef] [PubMed].
    [Google Scholar]
  45. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F.O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree Project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K.-H., Glöckner F.O., Rosselló-Móra R.. ( 2010;). Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33: 291–299 [CrossRef] [PubMed].
    [Google Scholar]
  47. Zhou Y., Pijuan M., Zeng R.J., Yuan Z.. ( 2009;). Involvement of the TCA cycle in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Water Res 43: 1330–1340 [CrossRef] [PubMed].
    [Google Scholar]
  48. Zhou Y., Pijuan M., Oehmen A., Yuan Z.. ( 2010;). The source of reducing power in the anaerobic metabolism of polyphosphate accumulating organisms (PAOs) – a mini-review. Water Sci Technol 61: 1653–1662 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000295
Loading
/content/journal/ijsem/10.1099/ijs.0.000295
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error