1887

Abstract

A Gram-staining-negative, facultatively anaerobic, rod-shaped, nitrogen-fixing bacterial strain, designated TULL-A, was isolated from a farmland soil sample in Yixing, China. The optimal conditions for growth were 30 °C, pH 7.0–8.0 and 0 % (w/v) NaCl. Q8 was the dominant respiratory quinone and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and aminophospholipid. Phylogenetic analysis of 16S rRNA gene sequences showed that strain TULL-A was most closely related to MSSRF40 (99.6 %), followed by subsp. DSM 14847 (96.8 %) and 1330 (96.8 %). Sequence analysis of the genes , and revealed that those of strain TULL-A also exhibit high sequence similarity with those of the species MSSRF40 (95.5, 94.1 and 93.4 %). The genomic DNA G+C content was 52 mol%. The major fatty acids of strain TULL-A were C, Cω7 and/or Cω6, Cω7Cω6, C, C 3-OH/iso-C I and iso-C I and/or anteiso-C B. Strain TULL-A showed low DNA–DNA relatedness with MSSRF40 (35.10 ± 1.41 %). Based on the multiple genotypic and phenotypic data, strain TULL-A is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TULL-A ( = ACCC 19709 = KCTC 42181).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000281
2015-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2447.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000281&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . ), ( 1995;). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology , 3rd edn. New York: Wiley;.
    [Google Scholar]
  3. Beveridge T.J. , Lawrence J.R. , Murray R.G.E. . ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Microbiology , 3rd edn., pp. 19–33. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder R. L. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  4. Brenner D.J. . ( 1984;). Family I. Enterobacteriaceae Rahn 1937. . In Bergey's Manual of Systematic Bacteriology vol. 1, pp. 408–420. Edited by Krieg N. R. , Holt J. G. . Baltimore: Williams & Wilkins;.
    [Google Scholar]
  5. Collins M.D. , Pirouz T. , Goodfellow M. , Minnikin D.E. . ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dauga C. . ( 2002;). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52: 531–547 [PubMed].[CrossRef]
    [Google Scholar]
  7. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dong X.-Z. , Cai M.-Y. . ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press;.
    [Google Scholar]
  9. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  11. Gyaneshwar P. , James E.K. , Mathan N. , Reddy P.M. , Reinhold-Hurek B. , Ladha J.K. . ( 2001;). Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens . J Bacteriol 183: 2634–2645 [CrossRef] [PubMed].
    [Google Scholar]
  12. Iversen C. , Waddington M. , On S.L. , Forsythe S. . ( 2004;). Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter Citrobacter species. J Clin Microbiol 42: 5368–5370 [CrossRef] [PubMed].
    [Google Scholar]
  13. Janda J.M. , Abbott S.L. . ( 2006;). The Enterobacteria , 2nd edn. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Kämpfer P. , Ruppel S. , Remus R. . ( 2005;). Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae . Syst Appl Microbiol 28: 213–221 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  18. Li R. , MacRae I.C. . ( 1992;). Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biol Biochem 24: 413–419 [CrossRef].
    [Google Scholar]
  19. Lodewyckx C. , Vangronsveld J. , Porteous F. , Moore E.R.B. , Taghavi S. , Mezgeay M. , van der Lelie D. . ( 2002;). Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21: 583–606 [CrossRef].
    [Google Scholar]
  20. Marchesi J.R. , Sato T. , Weightman A.J. , Martin T.A. , Fry J.C. , Hiom S.J. , Dymock D. , Wade W.G. . ( 1998;). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64: 795–799 [PubMed].
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  22. Mollet C. , Drancourt M. , Raoult D. . ( 1997;). rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26: 1005–1011 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nishijima K.A. , Wall M.M. , Siderhurst M.S. . ( 2007;). Demonstrating pathogenicity of Enterobacter cloacae on macadamia and identifying associated volatiles of gray kernel of macadamia in Hawaii. Plant Dis 91: 1221–1228 [CrossRef].
    [Google Scholar]
  24. Rameshkumar N. , Lang E. , Nair S. . ( 2010;). Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 60: 179–186 [CrossRef] [PubMed].
    [Google Scholar]
  25. Reichenbach H. . ( 1992;). The order Cytophagales . . In The Prokaryotes , 2nd edn. vol. 4, pp. 3631–3675. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . New York: Springer; [CrossRef].
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  27. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  28. Stackebrandt E. , Goebel B.M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  29. Taghavi S. , Garafola C. , Monchy S. , Newman L. , Hoffman A. , Weyens N. , Barac T. , Vangronsveld J. , van der Lelie D. . ( 2009;). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75: 748–757 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.[CrossRef]
    [Google Scholar]
  31. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  32. Zhu B. , Lou M.M. , Xie G.L. , Wang G.F. , Zhou Q. , Wang F. , Fang Y. , Su T. , Li B. , Duan Y.P. . ( 2011;). Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. Int J Syst Evol Microbiol 61: 2769–2774 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000281
Loading
/content/journal/ijsem/10.1099/ijs.0.000281
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error