1887

Abstract

Strain THG-EP9, a Gram-stain-negative, aerobic, motile, rod-shaped bacterium was isolated from field-grown eggplant () rhizosphere soil collected in Pyeongtaek, Gyeonggi–do, Republic of Korea. Based on 16S rRNA gene sequence comparisons, strain THG-EP9 had closest similarity with THG 15 (97.3  % 16S rRNA gene sequence similarity), PSD1-4 (97.2 %), JM-1085 (97.2 %) and LMG 4025 (96.8 %). DNA–DNA hybridization showed 5.7 % and 9.1 % DNA reassociation with KACC 14527 and KCTC 12382, respectively. Chemotaxonomic data revealed that strain THG-EP9 possesses menaquinone–6 as the only respiratory quinone and iso-C (29.0 %), C (12.5 %) and iso-C 3-OH (11.9 %) as the major fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, an unidentified aminophospholipid, two unidentified glycolipids, six unidentified aminolipids and two unidentified polar lipids. The DNA G+C content was 35.3 mol%. These data corroborated the affiliation of strain THG–EP9 to the genus . Thus, the isolate represents a novel species of this genus, for which the name sp. nov. is proposed, with THG-EP9 ( = KACC 17652 = JCM 19456) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000266
2015-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2372.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000266&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F. , Hugo C. , Bruun B. . ( 2006;). The genera Chryseobacterium and Elizabethkingia. . In The Prokaryotes: a Handbook on the Biology of Bacteria , 3rd edn. vol. 7, pp. 638–676. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . New York: Springer;.
    [Google Scholar]
  2. Bernardet J.-F. , Hugo C. , Bruun B. . ( 2011;). Genus VII. Chryseobacterium Vandamme et al. 1994. . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol. 4, pp. 180–196, Edited by Whitman W. . Baltimore: Williams & Wilkins;.
    [Google Scholar]
  3. Collins M.D. , Jones D. . ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  4. de Beer H. , Hugo C.J. , Jooste P.J. , Willems A. , Vancanneyt M. , Coenye T. , Vandamme P.A.R. . ( 2005;). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55: 2149–2153 [CrossRef] [PubMed].
    [Google Scholar]
  5. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  6. Fautz E. , Reichenbach H. . ( 1980;). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8: 87–91 [CrossRef].
    [Google Scholar]
  7. Felsenstein J. . ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  8. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  9. Hiraishi A. , Ueda Y. , Ishihara J. , Mori T. . ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42: 457–469 [CrossRef].
    [Google Scholar]
  10. Holmes B. , Steigerwalt A.G. , Nicholson A.C. . ( 2013;). DNA-DNA hybridization study of strains of Chryseobacterium Elizabethkingia Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov.. Int J Syst Evol Microbiol 63: 4639–4662 [CrossRef] [PubMed].
    [Google Scholar]
  11. Im W.T. , Yang J.E. , Kim S.Y. , Yi T.H. . ( 2011;). Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. Int J Syst Evol Microbiol 61: 1430–1435 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H.J. . ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53: 93–97 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kämpfer P. , McInroy J.A. , Glaeser S.P. . , ( 2014;). Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek 105: (3) 491–500.[CrossRef]
    [Google Scholar]
  14. Kämpfer P. , Vaneechoutte M. , Lodders N. , De Baere T. , Avesani V. , Janssens M. , Busse H.J. , Wauters G. . ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 59: 2421–2428 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  17. Kirk K.E. , Hoffman J.A. , Smith K.A. , Strahan B.L. , Failor K.C. , Krebs J.E. , Gale A.N. , Do T.D. , Sontag T.C. , other authors . ( 2013;). Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 63: 4777–4783 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kook M. , Son H.M. , Ngo H.T. , Yi T.H. . ( 2014;). Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 64: 851–857 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kumar S. , Nei M. , Dudley J. , Tamura K. . ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299–306 [CrossRef] [PubMed].
    [Google Scholar]
  20. Loch T.P. , Faisal M. . ( 2014;). Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans Chryseobacterium gregarium . Int J Syst Evol Microbiol 64: 1573–1579 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  22. Minnikin D.E. , Patel P.V. , Alshamaony L. , Goodfellow M. . ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  23. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  24. Moore D.D. , Dowhan D. . ( 1995;). Preparation and Analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . New York: Wiley;.
    [Google Scholar]
  25. Park M.S. , Jung S.R. , Lee K.H. , Lee M.S. , Do J.O. , Kim S.B. , Bae K.S. . ( 2006;). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56: 433–438 [CrossRef] [PubMed].
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  27. Sang M.K. , Kim H.S. , Myung I.S. , Ryu C.M. , Kim B.S. , Kim K.D. . ( 2013;). Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 63: 2835–2840 [CrossRef] [PubMed].
    [Google Scholar]
  28. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;.
  29. Tamaoka J. , Katayama-Fujiruma A. , Kuraishi H. . ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54: 31–36 [CrossRef].
    [Google Scholar]
  30. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tindall B.J. . ( 1990;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  32. Tindall B.J. , Rosselló-Móra R. , Busse H.J. , Ludwig W. , Kämpfer P. . ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  33. Vandamme P. , Bernardet J.F. , Segers P. , Kersters K. , Holmes B. . ( 1994;). New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom rev. Int J Syst Bacteriol 44: 827–831 [CrossRef].
    [Google Scholar]
  34. Venil C.K. , Nordin N. , Zakaria Z.A. , Ahmad W.A. . ( 2014;). Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer . Int J Syst Evol Microbiol 64: 3153–3159 [CrossRef] [PubMed].
    [Google Scholar]
  35. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  36. Wu Y.F. , Wu Q.L. , Liu S.J. . ( 2013;). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium Chryseobacterium taiwanense Chryseobacterium jejuense Chryseobacterium indoltheticum . Int J Syst Evol Microbiol 63: 913–919 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000266
Loading
/content/journal/ijsem/10.1099/ijs.0.000266
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error