1887

Abstract

Phenotypic and phylogenetic studies were performed on new isolates of a novel Gram-stain-positive, anaerobic, non-sporulating, rod-shaped bacterium isolated from a thermophilic biogas plant. The novel organisms were able to degrade crystalline cellulose. 16S rRNA gene comparative sequence analysis demonstrated that the isolates formed a hitherto unknown subline within the family . As a representative of the whole group of isolates, strain T3/55 was further characterized. The closest relative of T3/55 among the taxa with validly published names is , sharing 93.9 % 16S rRNA gene sequence similarity. Strain T3/55 was catalase-negative, indole-negative, and produced acetate, ethanol and propionic acid as major end products from cellulose metabolism. The major cellular fatty acids (>1 %) were 16 : 0 dimethyl acetal, 16 : 0 fatty acid methyl ester and 16 : 0 aldehyde. The DNA G+C content was 36.6 mol%. A novel genus and species, gen. nov., sp. nov., is proposed based on phylogenetic analysis and physiological properties of the novel isolate. Strain T3/55 ( = DSM 29228 = CECT 8801), represents the type strain of gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000264
2015-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000264&mimeType=html&fmt=ahah

References

  1. Biddle A. , Stewart L. , Blanchard J. , Leschine S. . ( 2013;). Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae Ruminococcaceae in diverse gut communities. Diversity (Basel) 5: 627–640.[CrossRef]
    [Google Scholar]
  2. Collins M.D. , Lawson P.A. , Willems A. , Cordoba J.J. , Fernandez-Garayzabal J. , Garcia P. , Cai J. , Hippe H. , Farrow J.A. . ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812–826.[CrossRef]
    [Google Scholar]
  3. DeLong E.F. . ( 2009;). The microbial ocean from genomes to biomes. Nature 459: 200–206.[CrossRef]
    [Google Scholar]
  4. Euzéby J. . ( 2010;). In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no 132. Int J Syst Evol Microbiol 60: 1009–1010.[CrossRef]
    [Google Scholar]
  5. Gosalbes M.J. , Durbán A. , Pignatelli M. , Abellan J.J. , Jiménez-Hernández N. , Pérez-Cobas A.E. , Latorre A. , Moya A. . ( 2011;). Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6: e17447.[CrossRef]
    [Google Scholar]
  6. Hardman J.K. , Stadtman T.C. . ( 1960;). Metabolism of ω-acids. II. Fermentation of delta-aminovaleric acid by Clostridium aminovalericum n. sp. J Bacteriol 79: 549–552.
    [Google Scholar]
  7. Jeong H. , Yi H. , Sekiguchi Y. , Muramatsu M. , Kamagata Y. , Chun J. . ( 2004;). Clostridium jejuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 54: 1465–1468.[CrossRef]
    [Google Scholar]
  8. Jeong H. , Lim Y.W. , Yi H. , Sekiguchi Y. , Kamagata Y. , Chun J. . ( 2007;). Anaerosporobacter mobilis gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 57: 1784–1787.[CrossRef]
    [Google Scholar]
  9. Johnson E.A. , Madia A. , Demain A.L. . ( 1981;). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum . Appl Environ Microbiol 41: 1060–1062.
    [Google Scholar]
  10. Johnson M.J. , Thatcher E. , Cox M.E. . ( 1995;). Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33: 755–758.
    [Google Scholar]
  11. Kittelmann S. , Seedorf H. , Walters W.A. , Clemente J.C. , Knight R. , Gordon J.I. , Janssen P.H. . ( 2013;). Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8: e47879.[CrossRef]
    [Google Scholar]
  12. Koeck D.E. , Zverlov V.V. , Liebl W. , Schwarz W.H. . ( 2014;). Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential. Syst Appl Microbiol 37: 311–319.[CrossRef]
    [Google Scholar]
  13. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. , other authors . ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371.[CrossRef]
    [Google Scholar]
  14. Ludwig W. , Schleifer K.-H. , Whitman W.B. . ( 2009;). Revised road map to the phylum Firmicutes . . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol. 3, pp. 1–13. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K. H. , Whitman W. B. . New York: Springer;.
    [Google Scholar]
  15. Mechichi T. , Labat M. , Garcia J.L. , Thomas P. , Patel B.K. . ( 1999;). Characterization of a new xylanolytic bacterium, Clostridium xylanovorans sp. nov. Syst Appl Microbiol 22: 366–371.[CrossRef]
    [Google Scholar]
  16. Meehan C.J. , Beiko R.G. . ( 2014;). A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 6: 703–713.[CrossRef]
    [Google Scholar]
  17. Meyer F. , Goesmann A. , McHardy A.C. , Bartels D. , Bekel T. , Clausen J. , Kalinowski J. , Linke B. , Rupp O. , other authors . ( 2003;). GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31: 2187–2195.[CrossRef]
    [Google Scholar]
  18. Miller G.I. . ( 1959;). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426–428.[CrossRef]
    [Google Scholar]
  19. Munoz R. , Yarza P. , Ludwig W. , Euzéby J. , Amann R. , Schleifer K.H. , Glöckner F.O. , Rosselló-Móra R. . ( 2011;). Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 34: 169–170.[CrossRef]
    [Google Scholar]
  20. Parte A.C. . ( 2014;). LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616.[CrossRef]
    [Google Scholar]
  21. Podosokorskaya O.A. , Bonch-Osmolovskaya E.A. , Beskorovaynyy A.V. , Toshchakov S.V. , Kolganova T.V. , Kublanov I.V. . ( 2014;). Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol 64: 2657–2661.[CrossRef]
    [Google Scholar]
  22. Quast C. , Pruesse E. , Yilmaz P. , Gerken J. , Schweer T. , Yarza P. , Peplies J. , Glöckner F.O. . ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: (D1), D590–D596.[CrossRef]
    [Google Scholar]
  23. Rainey F.A. . ( 2009;). Family V. Lachnospiraceae fam. nov. . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol. 3p. 921. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K. H. , Whitman W. B. . New York: Springer;.
    [Google Scholar]
  24. Reveneau C. , Adams S.E. , Cotta M.A. , Morrison M. . ( 2003;). Phenylacetic and phenylpropionic acids do not affect xylan degradation by Ruminococcus albus . Appl Environ Microbiol 69: 6954–6958.[CrossRef]
    [Google Scholar]
  25. Sleat R. , Mah R.A. . ( 1985;). Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digester. Int J Syst Bacteriol 35: 160–163.[CrossRef]
    [Google Scholar]
  26. Stamatakis A. . ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.[CrossRef]
    [Google Scholar]
  27. van Gylswyk N.O. . ( 1980;). Fusobacterium polysaccharolyticum sp. nov., a Gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbio 116: 157–163.
    [Google Scholar]
  28. van Gylswyk N.O. , Van der Toorn J.J.T.K. . ( 1985;). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Int J Syst Bacteriol 35: 323–326.[CrossRef]
    [Google Scholar]
  29. Varel V.H. , Tanner R.S. , Woese C.R. . ( 1995;). Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol 45: 490–494.[CrossRef]
    [Google Scholar]
  30. Wanner G. , Formanek H. , Galli D. , Wirth R. . ( 1989;). Localization of aggregation substances of Enterococcus faecalis after induction by sex pheromones. An ultrastructural comparison using immuno labelling, transmission and high resolution scanning electron microscopic techniques. Arch Microbiol 151: 491–497.[CrossRef]
    [Google Scholar]
  31. Warnick T.A. , Methé B.A. , Leschine S.B. . ( 2002;). Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52: 1155–1160.[CrossRef]
    [Google Scholar]
  32. Westram R. , Bader K. , Prüsse E. , Kumar Y. , Meier H. , Glöckner F.O. , Ludwig W. . ( 2011;). arb: a software environment for sequence data. . In Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches, pp. 1–13. Edited by de Bruijn F. J. . Hoboken, NJ: Wiley;.
    [Google Scholar]
  33. Wood T.M. . ( 1988;). Preparation of crystalline, amorphous, and dyed cellulase substrates. Methods Enzymol 160: 19–25.[CrossRef]
    [Google Scholar]
  34. Yutin N. , Galperin M.Y. . ( 2013;). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15: 2631–2641.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000264
Loading
/content/journal/ijsem/10.1099/ijs.0.000264
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error